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ABSTRACT 

Through the application of financial mathematics, this paper explores how mathematical 

modelling can be used to benefit from favourable conditions in financial markets like asset 

appreciations. Given that assets should be sold upon the appreciation of their price, this paper 

aims to find a mathematical relationship between the increase in the price of an asset and the 

specific amount that should be liquidated in order to maximise revenue. After analysing the data, 

this paper concludes that if ∆𝑝denotes the appreciation in price, 𝐿(∆𝑝) the amount liquidated, 𝑇 

is a constant representing the maximum possible value of ∆𝑝 and 𝑚 is the minimum value of 

𝐿(∆𝑝), then  

𝐿(∆𝑝) =
(100−𝑚)(𝑛+1)∆𝑝(𝑛+1)

𝑇(𝑛+1)(𝑛+1)
+𝑚 such that 

𝑛 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑐𝑡𝑖𝑛𝑔 𝑎𝑠 𝑎𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡) 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑢 where 𝑢 is the minimum value of 𝑛 at 

which 𝐿′(∆𝑝) =
−(𝑙𝑛(𝑚)−𝑙𝑛(100))×100

𝑇
 

The results from this modelling process are highly applicable in day trading, where prices of 

assets such as foreign exchange and cryptocurrency fluctuate in the short run, and in 

conceptualising trading strategies which favour short-term revenue inflows. 

Keywords: Revenue Maximisation, Financial Markets, Asset Liquidation, Modelling, Price 

Appreciations 

Introduction 
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Is there an ideal relationship between the amount of a tradeable asset that should be liquidated 

and the change in the asset’s price? If so, what does this relationship look like, how does it vary 

with fluctuations in price and is it possible to maximise the revenue generated via the proportion 

of asset sold at different prices? To investigate these questions, this paper aims to apply linear, 

quadratic, sinusoidal, logistic, exponential and power mathematical models to explore different 

relationships between changes in price and proportion of asset that should be liquidated. The 

results from this investigation can be applied in trading strategies wherein traders can capitalise 

on short-term appreciations to ensure that every marginal trade generates revenue. It is found that 

a power model yields the most effective relationship. 

Methodology: 

To find a potential revenue maximising relationship between the change in price and the amount 

of an asset that should be liquidated, I first defined the respective thresholds to which the price 

can change through the application of past-price statistics.These are essentially  parameters vis-à-

vis the potential proportions liquidated as per potential changes in price.After establishing fixed 

parameters vis-à-vis the proportions liquidated and potential changes in price and considering 

different types of increasing functions, I derived functions that determine a relationship between 

the change in price and the amount of an asset that should be liquidated. For mathematically 

rigorous calculations, the Casio CG-50 Graphics Display Calculator was used along with 

Wolfram Alpha for more challenging derivatives and equations. For the purpose of this paper, I 

considered linear, quadratic, sinusoidal, logistic, and exponential functions. Furthermore, I 

derived the equation that describes how selling different quantities of an asset impacts revenue 

models. To find the ideal model for liquidation, I analysed the relationship between the 

derivatives of each model and revenue through the use of basic differential calculus. Lastly, 

adapting data from Yahoo Finance,1I utilised the prices of BITCOIN from 22nd December 2021 

to 23rd March 2022 to test the models. In this testing process, future price values were simulated 

using Microsoft Excel’s built-in random integer generator.  

Conceptual Overview: 

                                                
1Yahoo! Finance. “Bitcoin USD (BTC-USD) Price History & Historical Data - Yahoo Finance.” 

Finance.yahoo.com, 23 Mar. 2022, finance.yahoo.com/quote/BTC-

USD/history?period1=1640131200&period2=1647993600&interval=1d&filter=history&frequency=1d&includeAdj

ustedClose=true. Accessed 2 Apr. 2022. 
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The fundamental principal behind all financial transactions involving tradeable securities is to 

sell an asset at a higher price than its purchase price. The amount an asset appreciates by can be 

expressed as  

∆𝑝 =  𝑝 − 𝑝0 (1) 

where 𝑝0 represents the initial purchase price and 𝑝 represents the price at which the asset is 

traded in a particular trade at a particular point in time. In this equation, if 𝑝 > 𝑝0,then there is an 

increase in price (the scope of discussion is limited to appreciation). For every trade made where 

𝑝 > 𝑝0, the trader earns a revenue, 𝑅, equal to  

𝑅 =  𝑉𝑝 (2) 

where 𝑉 is the volume of an asset purchased.It is assumed that the trader retains all revenue 

generated per trade without paying any share to a third party. However, in (2), 100% of 𝑉 is 

being liquidated at 𝑝𝑡 (where 𝑡 denotes time). If the price of the asset appreciates to 𝑝(𝑡+1) which 

is greater than 𝑝𝑡, the 100% liquidation detailed in (2) leads to lost potential profits. In order to 

maximize potential profit, the volume of the asset that would be liquidated should be related to 

the extent of the appreciation. The relationship can be expressed as a mathematical function 

𝐿(∆𝑝) where 𝐿 represents the proportion of 𝑉 liquidated with respect to the extent to which the 

price appreciates or the magnitude of ∆𝑝. 

Conditions for Modelling: 

The assumptions behind the modelling of 𝐿(∆𝑝) are as follows. Firstly, ∆𝑝 is always greater than 

0, ergo liquidation only occurs when the price of the asset appreciates. In addition, ∆𝑝 is 

considered as the only variable that impacts the proportion of the asset liquidated as all other 

influences on trading are held constant. As liquidation occurs for every positive value of ∆𝑝, as 

long as the price appreciates, liquidation occurs. 𝐿(∆𝑝) must always be greater than 𝑚, which is 

the minimum proportion of 𝑉 that must be liquidated. It is theoretically impossible to liquidate 0 

shares and given that liquidation relates to ∆𝑝, which is greater than 0, as clarified above, 𝑚 

becomes the 𝐿 intercept (conventional y-intercept on the cartesian plane). Thus, 𝑚 =  𝐿(0). 

Lastly, the model relies on a maximum threshold value, 𝑇, with respect to ∆𝑝. Should ∆𝑝 =  𝑇, 

100% of 𝑉will be liquidated, and thus𝐿(𝑇) =  100. Both 𝑚 and 𝑇 are considered to be essential 

constants for the modelling process. 

Calculating 𝒎 and 𝑻: 
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Calculating the value of 𝑚 is relatively straightforward. Let us assume that a brokerage specifies 

that 𝑀 units of an asset must be sold per trade. By converting 𝑀 as a proportion of 𝑉 we get  

𝑚 = 
100𝑀

𝑉
 

(3) 

On the other hand, the value of 𝑇 should be determined based on the previous movements of the 

asset’s price since 𝑇 is a maximum threshold for ∆𝑝. The concept of residuals may be applied in 

this instance. In statistics, the residual is a predicted 𝑦 value subtracted from the actual 𝑦 value. 

In our case, we may consider the residual to be the positive difference between 𝑝0 and past 

values of 𝑝per defined periods of time. It is once again assumed all past values of 𝑝 are greater 

than 𝑝0. The same is illustrated in Figure 1. 

 

𝑇 is determined by the mean of all the positive residual price points taken per period of time. In 

order to calculate 𝑇, we must subtract 𝑝0 from all previous prices values that are greater than 𝑝0 

and calculate the mean of the differences. This is shown below mathematically. 
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𝑇 =
(∑ (𝑝𝑖 − 𝑝0))

𝑤
𝑖=1

𝑤
 

(4) 

 where 𝑤 is the total number of residual price points taken. This value of 𝑇 ensures that the point 

at which 100% of the asset is liquidated is based on previous values of 𝑝 rather than being 

abstract and thereby also ensures that price and ∆𝑝are the sole determinants of 𝐿(∆𝑝). Therefore, 

the domain of 𝐿(∆𝑝) is {∆𝑝| 0 < ∆𝑝 ≤ 𝑇|∆𝑝 ∈ 𝑅} and the range is {𝐿(∆𝑝)| 𝑚 < 𝐿(∆𝑝) ≤

100|𝐿(∆𝑝) ∈ 𝑅}. 

Linear Model: 

The simplest relationship between 𝐿(∆𝑝) and ∆𝑝 is a linear relationship. A linear relationship 

implies that 𝐿(∆𝑝) and ∆𝑝 are directly proportional to each other. Given that 𝐿(0) = 𝑚 and the 

function 𝑦 = 𝑘𝑥 represents direct proportionality between 𝐿(∆𝑝) and ∆𝑝, we may modify the 

linear function 𝑦 = 𝑎𝑥 + 𝑏 (𝑎 is the gradient and 𝑏 is the y-intercept) in the following manner: 

𝐿(∆𝑝) − 𝑚 = 𝑘∆𝑝 (5) 

𝐿(∆𝑝) = 𝑘∆𝑝 +𝑚 (6) 

Here 𝑚 is the y-intercept and as per the aforementioned domain, 𝐿(𝑇) = 100 thus,  

100 = 𝑘𝑇 − 𝑚 (7) 

(100 − 𝑚)

𝑇
= 𝑘 

 

𝐿(∆𝑝) =
(100 − 𝑚)

𝑇
∆𝑝 +𝑚 

(8) 

The linear relationship is depicted in Figure 2 for 𝑇 = 200 and 𝑚 = 3.  
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As evident in Figure 2, the line intersects the 𝑦 axis at (0,𝑚) or(0,3). The exact function shown 

is 𝐿(∆𝑝) = 0.485∆𝑝 + 3. Given the linear nature of the model, the gradient of the line is simply 
(100−3)

200
 or 0.485. In this instance, an additional 0.485% is liquidated for every 1 unit increase in 

∆𝑝. 

Quadratic Model: 

The traditional quadratic equation can be expressed as a function in the form: 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (9) 

The maximum of 𝐿(∆𝑝) will be at (𝑇, 100) where all units are liquidated. 

Given that 𝑚 is 𝐿(0), 𝑐 =  𝑚 as both are the 𝑦 intercepts in the cartesian plane. As the axis of 

symmetry of any quadratic function is 
−𝑏

2𝑎
, it may be used to derive the full quadratic model: 

𝑇 =  
−𝑏

2𝑎
 

(10) 

𝑏 =  −2𝑎𝑇  

Using the substitution,  
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𝑎𝑇2 − 2𝑎𝑇(𝑇) +𝑚 =  100 (11) 

𝑎(−𝑇2) =  100 −𝑚  

𝑎 =  
(100− 𝑚)

−𝑇2
 

 

𝑏 =  −2 ×
(100 − 𝑚)

−𝑇2
× 𝑇 

 

𝑏 =  
2(100 −𝑚)

𝑇
 

 

Thus, the complete model is: 

𝐿(∆𝑝) =
(100 − 𝑚)

−𝑇2
∆𝑝2 +

2(100 − 𝑚)

𝑇
∆𝑝 +𝑚 

(12) 

 

To elucidate this model, setting 𝑚 as 3 and 𝑇 as 200, the graph of 𝐿(∆𝑝) is shown in Figure 3.  
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This function intersects the 𝑦 axis at (0,𝑚) or (0,3) and has a maximum at (𝑇, 100) or 

(200,100). Given these particular values of 𝑚 and 𝑇, the exact function shown above is  

𝐿(∆𝑝) = (2.425× 10−3)∆𝑝2 + 0.97∆𝑝 + 3. 

Sinusoidal Model: 

A sinusoidal model is characterised by continuous smooth periodic oscillations. The sinusoidal 

model used in this paper is the Sine Model which follows the general form 

𝑓(𝑥) =  a sin(𝑏(𝑥 − 𝑐)) + 𝑑 (13) 

This formis derived from 𝑦 = sin 𝑥 by a vertical stretch with a scale factor of 𝑎, a horizontal 

stretch with a scale of factor of  
1

𝑏
, followed by a horizontal translation of 𝑐 units and a vertical 

translation of 𝑑 units.2 Since there is periodic oscillation, the maximum of the function occurs at 

half the period as per the domain at 𝐿(𝑇). Thus, only a small segment of the overall function is 

considered as 𝐿(∆𝑝), which is constrained by the set domain and range. The function can be 

derived through the following steps: 

𝑎 =  
𝐿(𝑇) −𝑚

2
=
100 − 𝑚

2
 

(14) 

𝑑 =  
𝐿(𝑇) +𝑚

2
=
100 + 𝑚

2
 

(15) 

 𝑏 is 
2𝜋

𝑃𝑒𝑟𝑖𝑜𝑑
 and since 𝑇 is half the period, 𝑏 can be simplified accordingly 

𝑏 =  
2𝜋

2𝑇
=
𝜋

𝑇
 

(16) 

We know that the maximum of the sine function will be when ∆𝑝 =  𝑇 and the minimum is 

when ∆𝑝 =  0. The difference between the maximum and minimum is half the period, 𝑇. As the 

distance between the midpoint and the maximum is the horizontal shift from the 𝐿 axis, the 

distance can be calculated as
𝑇

2
. Hence, 𝑐 +

𝑇

2
 =  𝑇 , so 

𝑐 =
𝑇

2
 

(17) 

                                                
2Haese, Michael, et al. Mathematics Core Topic HL 1. 2019. 1st ed., Haese & Harris Publications, 2019. 
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The complete half-wave function per the appropriate domain and range is: 

𝐿(∆𝑝) =  
(100 −𝑚)

2
sin(

𝜋

𝑇
(∆𝑝 −

𝑇

2
)) +

(100 +𝑚)

2
 

(18) 

Substituting 𝑇 as 200 and 𝑚 as 3, we obtain Figure 4. 

 

The function above has a half-period of 𝑇 and a maximum at (𝑇, 100). Using this information, 

the exact function shown above in Figure 4 is 

𝐿(∆𝑝) =  48.5 sin(
𝜋

200
(∆𝑝 − 100)) + 51.5. 

Logistic Model: 

Conventionally, Velhurst’s logistic model models the population growth of a species with 

respect to finite resources and change in time. Thus, the population growth rate decreases when 

𝑃 (population) approaches the carrying capacity, 𝐾, of the environment, and the range of the 

function is constrained at 𝐾.Although the logistic model is predominantly applied in ecology and 

biology, if we consider the proportion of shares to be liquidated, 𝐿(∆𝑝), to be a population that 

has a limit (carrying capacity) of 100%with respect to∆𝑝 (which serves as the independent 
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variable, similar to time in the original model), then the logistic model may be adapted. The 

adaptation to 𝐿(∆𝑝) would take the form of the following differential equation: 

𝑑𝐿

𝑑∆𝑝
= 𝑟𝐿 (1 −

𝐿

100
) 

(19) 

where 𝑟 controls the rate of change of 𝐿(∆𝑝)with respect to ∆𝑝. 𝐿 =  100 as that is the 

maximum % of the asset that can be liquidated – the constraint as 𝐿(∆𝑝) approaches the limit at 

100. Integrating by partial fractions,3𝐿(∆𝑝) can be expressed by the following function: 

𝐿(∆𝑝) =  
100

1 + 𝐶𝑒−𝑟∆𝑝
 

(20) 

where 𝐶 = 
100

𝑚
−𝑚 as 𝐿(0) =  𝑚 as per the solution of the differential equation (15). 𝑟 can be 

calculated by solving 𝐿(𝑇) =  99.9 as itis the closest value to 100 that returns a single value of 

𝑟. Applying the following rearrangements: 

99.9 =  
100

1 + 𝐶𝑒−𝑟𝑇
 

(21) 

𝐶𝑒−𝑟𝑇  =  
100

99
 − 1 

 

𝑒−𝑟𝑇 =
0.009

𝐶
 

−𝑟𝑇 =  ln (
0.009

𝐶
) 

𝑟 =  
− ln (

0.009
𝐶 )

𝑇
 

After substituting 𝐶,the complete model can be expressed as: 

                                                
3Stewart, James. CALCULUS : Early Transcendentals. S.L., Cengage Learning, 23 Jan. 2020. The solution of the 

differential equation is adapted from the same. 
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𝐿(∆𝑝) =  
100

1 + (
100
𝑚  −  𝑚) 𝑒

ln(
0.009

(
100
𝑚
 − 𝑚)

)

𝑇
∆𝑝

 
(22) 

Figure 5 displays 𝐿(∆𝑝) when 𝑚 =  3 and 𝑇 =  200. 

 

At larger values of  ∆𝑝, 𝐿(∆𝑝)  approaches 100 with a 𝑦-intercept of (0,3). The exact function in 

Figure 5 (displayed to 3 significant figures) is𝐿(∆𝑝) =  
100

1+(30.3)𝑒−0.0406∆𝑝
. 

Exponential Model: 

Perhaps the most intuitive approach to𝐿(∆𝑝) is an exponential relationship. The proportion 

liquidated increases exponentiallywith∆𝑝 in order to maximise profit. An exponential 

relationship is written as 

𝐿(∆𝑝) =  𝑘 × 𝑏∆𝑝 (23) 

Substituting ∆𝑝 as 0,  

𝐿(0) =  𝑚 
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𝑘 × 𝑏0 = 𝑚 (23) 

𝑘 = 𝑚  

We know that 𝐿(𝑇) =  100, hence we can solve for 𝑏 accordingly: 

𝑚 × 𝑏𝑇 = 100 (24) 

𝑏𝑇 =
100

𝑚
 

𝑏 = √
100

𝑚

𝑇

 

Hence, the final exponential model is: 

𝐿(∆𝑝) = 𝑚(√
100

𝑚

𝑇

)

∆𝑝

 

(25) 

Figure 6 shows 𝐿(∆𝑝) when 𝑚 =  3 and 𝑇 =  200. 
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The exact function shown in Figure 6 is 𝐿(∆𝑝) = 3( √33.33
200

)
∆𝑝

 for the domain and range 

specified above. 

Power Model: 

The power model is unique for it can be extended to create a more accurate model that allows 

one to set the rate of change as per their preferences. For example, if a trader wished to liquidate 

50%of the asset when ∆𝑝 = 110, the new model would be devised based on the condition 

𝐿(110) = 50. Since the rate of change of 𝐿(∆𝑝) increases as∆𝑝 increases, the rate of change 

may be expressed as a power model wherein the rate of change is proportional to ∆𝑝raised to a 

certain power, as written below.  

𝐿′(∆𝑝) = 𝑘∆𝑝𝑛 (26) 

Integrating the equation above results in the general solution: 

∫(𝑘∆𝑝𝑛)𝑑 ∆𝑝 =
𝑘∆𝑝(𝑛+1)

(𝑛 + 1)
+ 𝑐 

(27) 

The general solution is found by 𝑐 =  𝑚 as 𝐿(0) =  𝑚. Solving for 𝑘 

𝑘𝑇(𝑛+1)

(𝑛 + 1)
+𝑚 =  100 

(28) 

𝑘𝑇(𝑛+1)  =  (𝑛 + 1)(100− 𝑚)  

𝑘 =  
(𝑛 + 1)(100 − 𝑚)

𝑇(𝑛+1)
 

 

Hence, the final expression for 𝐿(∆𝑝) is  

𝐿(∆𝑝) =  
(100 − 𝑚)(𝑛 + 1)∆𝑝(𝑛+1)

𝑇(𝑛+1)(𝑛 + 1)
+𝑚 

(29) 

The particular solution then varies based on the trader’s risk undertaking and personal 

preferences. For example, if 𝑚 =  3 and 𝑇 =  200 and the trader wishes that 𝐿(150) = 50, 

then we have the equation: 
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50 =  
97(𝑛 + 1)150(𝑛+1)

200(𝑛+1)(𝑛 + 1)
+ 3 

(30) 

Solving the equation above to three significant figures, 𝑛 =  1.52. In this instance, the particular 

solution of the model is 

𝐿(∆𝑝) =
97 × 2.52𝑥2.52

2002.52 × 2.52
 

(31) 

This figure is represented in Figure 7 below. 

 

Using the values specified above, the exact power model is simply equation (31) for the domain 

and range established above. 

Evaluation of Models 

In order to evaluate the models above, it is worth noting how values of 𝐿(∆𝑝) impact marginal 

revenue per trade. This is essential in understanding how revenue is maximised and generated. 
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Let the volume of shares remaining after trade be 𝑣𝑡.Assuming that 𝐿(∆𝑝) is a %,the volume of 

shares remaining after trade 1can be represented as: 

𝑣1 =  𝑉(1 − 𝐿(∆𝑝1)) (32) 

For trade 2, the remaining number of shares before the trade is 𝑣1 in place of 𝑉. 

𝑣2 = 𝑉1(1 − 𝐿(∆𝑝2)) (33) 

𝑣2 =  𝑉(1 − 𝐿(∆𝑝1))(1 − 𝐿(∆𝑝2))  

From the above equation, we may generalise the formula of 𝑣𝑡 as: 

𝑣𝑡 =  𝑉(1 − 𝐿(∆𝑝1))(1 − 𝐿(∆𝑝2))(1 − 𝐿(∆𝑝3))… (1 − 𝐿(∆𝑝𝑡)) (34) 

However, 𝑣𝑡 will always approach0 as all units of the asset that comprise of its total volume are 

liquidated at the final trade. Though this is intuitive, the consideration of revenue introduces an 

interesting perspective. Let 𝑆𝑡 represent the total volume of the asset that has been sold at trade 

number 𝑡. The total number of units sold can be understood as the volume of asset remaining 

after trade 𝑡 subtracted from the volume of the total asset. Modifying (30), 𝑆𝑡 can be written as  

𝑆𝑡 = 𝑉 − ( 𝑉(1 − 𝐿(∆𝑝1))(1 − 𝐿(∆𝑝2))(1 − 𝐿(∆𝑝3))… (1 − 𝐿(∆𝑝𝑡))) 
(35) 

This brings us to the idea of marginal revenue, which is the amount of revenue made 

per each additional trade. The marginal number of shares liquidated at 𝑡 is𝑠𝑡. The mathematical 

expression is as follows: 

𝑠𝑡 = 𝑆𝑡 − 𝑆𝑡−1 (36) 

Therefore, marginal revenue trade 𝑡 is given by the multiplication below 

𝑅𝑚 = ∆𝑝𝑡 × 𝑠𝑡 (37) 

The total revenue earned after all trades have been made (𝑣𝑡 approaches 0) is 

𝑅 =  ∑(∆𝑝𝑡 × 𝑠𝑡)

𝑡𝑚𝑎𝑥

𝑡=1

 

(38) 
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where 𝑡𝑚𝑎𝑥 is the trade at which 𝑣𝑡reaches 0. In order to maximise𝑅, 𝑅𝑚 needs to be maximised 

at every trade. As per the formulae of 𝑠𝑡 and 𝑆𝑡, 𝑅𝑚 increases as both ∆𝑝𝑡 and 𝑠𝑡 increase. We 

know that the higher the value of 𝐿(∆𝑝𝑡), the greater the value of 𝑠𝑡. To ensure that both ∆𝑝𝑡 and 

𝑠𝑡 are at the highest possible values,𝐿(∆𝑝𝑡)should constantly increase as ∆𝑝𝑡 approaches 𝑇.The 

rate of change of 𝐿(∆𝑝)with respect to 𝑡 must increase as ∆𝑝 increases. Hence, we arrive at the 

criteria used to evaluate the following models. 

𝐿′(∆𝑝)must continuously increase as∆𝑝 → 𝑇ergo reach its maximum at the point 

(𝑇, 100)for{∆𝑝| 0 < ∆𝑝 ≤ 𝑇|∆𝑝 ∈ 𝑅}. 

Finding the points of inflection for the models is useful in order to find the point where the 

derivative of 𝐿(∆𝑝) is maximised. A point of inflection is a point at which the tangent to the 

curve crosses the curve4. For 𝐿(∆𝑝), there is a point of inflection at ∆𝑝 = 𝑢 if 𝐿′′(𝑢) =  0 and the 

sign of 𝐿′′(∆𝑝) changes at ∆𝑝 =  𝑢.Thus, the point of inflection tells us where the first derivative 

of the function is maximum which is critical for evaluating models as per the stipulated criteria. 

Linear Model: 

The rate of change of the linear model is simply the slope of the model. In our case, the first 

derivative is simply the value of 𝑘 calculated in (7).So, the rate of change is  

𝐿′(∆𝑝) =  
(100 − 𝑚)

𝑇
 

(39) 

However, 𝐿′(∆𝑝) is a constant in this model. This does not fit the criterion stipulated above as 

𝐿′(∆𝑝)does not increase as ∆𝑝 → 𝑇 nor does it have a maximum at(𝑇, 100). Thus, the linear 

model is unsuitable for maximising revenue in comparison to the other models. 

Quadratic Model: 

To find the rate of change, differentiate the quadratic model:  

𝑑

𝑑∆𝑝
(
(100 − 𝑚)

−𝑇2
∆𝑝2 +

2(100 −𝑚)

𝑇
∆𝑝 +𝑚) 

(40) 

                                                
4Haese, Michael, et al. Mathematics : Applications and Interpretation HL. 2 : For Use with IB Diploma Programme. 

Marleston, Sa, Haese Mathematics, 2019. 
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𝐿′(∆𝑝) =
2(𝑚 − 100)(∆𝑝 − 𝑇)

𝑇2
 

(41) 

In this instance, 𝐿′(∆𝑝) is a continuously decreasing linear equation, which makes calculating the 

point of inflection redundant. Since the derivative never increases, 𝐿′(∆𝑝) does not increase as 

∆𝑝 reaches 𝑇. As the derivative has no maximum value, the quadratic model fails to satisfy the 

criterion. 

Sinusoidal Model: 

To find the rate of change of the sinusoidal model, the following derivative is utilised: 

𝑑

𝑑∆𝑝
(
(100− 𝑚)

2
sin(

𝜋

𝑇
(𝑥 −

𝑇

2
)) +

(100 +𝑚)

2
) 

(42) 

𝐿′(∆𝑝) = −
𝜋(𝑚 − 100) sin (

𝜋∆𝑝
𝑇 )

2𝑇
 

(43) 

Note that for the model to be valid, 𝐿′(∆𝑝) must continuously increase or have a maximum at 

∆𝑝 = 𝑇. To find the maximum of the sinusoidal function, first the second derivative needs to be 

obtained.  

𝐿′′(∆𝑝) = −
𝜋2(𝑚 − 100) cos (

𝜋∆𝑝
𝑇 )

2𝑇2
 

(44) 

Equating 𝐿′′(∆𝑝) to 0,cos (
𝜋∆𝑝

𝑇
) = 0 

𝜋∆𝑝

𝑇
= cos−1(0) {∆𝑝| 0 < ∆𝑝 ≤ 𝑇|∆𝑝 ∈ 𝑄} 

(45) 

𝜋∆𝑝 =
𝜋 × 𝑇

2
 

 

∆𝑝 =
𝑇

2
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At ∆𝑝 =
𝑇

2
, there is a sign change in the second derivative from positive to negative which shows 

that ∆𝑝 =
𝑇

2
 is a point of inflection for the sinusoidal model of L(∆𝑝). It is at this point at which 

the derivative has a local maxima for the domain {∆𝑝| 0 < ∆𝑝 ≤ 𝑇|∆𝑝 ∈ 𝑄}.  

𝐴𝑠 𝐿′(∆𝑝) must always be increasing, the sinusoidal model partially suits the criterion for 

{∆𝑝 | 0 < ∆𝑝 ≤
𝑇

2
| ∆𝑝 ∈ 𝑄}. However, for {∆𝑝 |

𝑇

2
< ∆𝑝 ≤ 𝑇|∆𝑝 ∈ 𝑄}, the model fails to satisfy 

the criterion. Thus, the sinusoidal model cannot maximise marginal revenue for higher values of 

∆𝑝 and is therefore unsuitable as a general model for partial liquidation. 

Logistic model: 

The first derivative of the aforementioned logistic function can be represented in the following 

manner.  

𝑑

𝑑∆𝑝

(

 
 
 
 

100

1 + (
100
𝑚  −  𝑚) 𝑒

ln(
0.009

(
100
𝑚
 − 𝑚)

)

𝑇
∆𝑝
)

 
 
 
 

 

(46) 

𝐿′(∆𝑝) = −

100 ln(
9

1000(
100
𝑚 −𝑚)

)(
100
𝑚 −𝑚) 𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇

𝑇

(

 
 
 

(
100
𝑚 −𝑚)𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇

)

 
 
 

2  

(47) 

The second derivative must be found to calculate the point at which 
𝑑𝐿

𝑑(∆𝑝)
 is maximised. The 

expression for the second derivative is summarised below. 
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𝐿′′(∆𝑝) = −

100 ln((
9

1000 (
100
𝑚
−𝑚)

))

2

𝑚 × (𝑚2 − 100) 𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 ×

(

 
 
 
(𝑚2 − 100)𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 +𝑚

)

 
 
 

𝑇2

(

 
 
 
(𝑚2 − 100)𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 −𝑚

)

 
 
 

3  

(48) 

 

To find the point of inflection, we solve the equation below: 

0 = −

100 ln((
9

1000 (
100
𝑚
− 𝑚)

))

2

𝑚 × (𝑚2 − 100) 𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 ×

(

 
 
 

(𝑚2 − 100)𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 +𝑚

)

 
 
 

𝑇2

(

 
 
 

(𝑚2 − 100)𝑒

ln(
9

1000(
100
𝑚
−𝑚)

)∆𝑝

𝑇 −𝑚

)

 
 
 

3  

(49) 

While the equation above can be equated to 0 with the help of technology, this process can be 

complicated and varies with the value of 𝑚 and 𝑇. It can be noted that for 𝑚 < 10,𝐿′(∆𝑝) 

reaches its maximum for values of ∆𝑝 <
𝑇

2
.If we analyse the graph of the logistic model,𝐿′(∆𝑝)is 

low for lower values of ∆𝑝 and increases temporarily. However, for values of ∆𝑝 greater than the 

maximum point, 𝐿′(∆𝑝) → 0 as ∆𝑝 → 𝑇, which makes the logistic model unsuitable for 

maximum revenue generation. 

The Exponential and Power Model: 

If 𝐿(∆𝑝) is an exponential function, 𝐿′(∆𝑝)is also exponential. Subsequently, there is no local 

maxima, only an increase in 𝐿′(∆𝑝) as ∆𝑝 approaches 𝑇. 𝐿′(∆𝑝)varies heavily based on the 

values of 𝑚 and 𝑇. The expression of the first derivative of the exponential model is given 

below: 

𝐿′(∆𝑝) =
−𝑚(ln(𝑚) − ln(100)) × 100

∆𝑝
𝑇

𝑇 × (𝑚
1
𝑇)
∆𝑝  

(50) 
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The second derivative of the function is as follows: 

𝐿′′(∆𝑝) =
𝑚(ln(𝑚) − ln(100))2 × 100

∆𝑝
𝑇

𝑇2 (𝑚
1
𝑇)
𝑥  

(51) 

The expression above will never equal 0 for ∆𝑝 > 0. The same reasoning holds true for the 

power model in (29). The first derivative of(29)can be written as 

𝐿′(∆𝑝) =
(100 −𝑚)(𝑛 + 1)∆𝑝𝑛

𝑇𝑛+1
 

(52) 

The second derivative of the same is  

𝐿′′(∆𝑝) = 𝑇(−𝑛−1)(100 − 𝑚)𝑛(𝑛 + 1)𝑥(𝑛−1) (53) 

Similar to the previous derivative, this will also never equate to 0 for the domain of 𝐿(∆𝑝). Note 

that for both these exponential functions, the derivatives reach their local maximums at the point 

(𝑇, 100). Thus, 𝑠𝑡 always increases at an increasing rate with respect to ∆𝑝𝑡 which allows for 

revenue maximisation and when ∆𝑝𝑡 is low, ∆𝑠𝑡 is also low along with marginal revenue. 

However, as the change in 𝑣𝑡 is also low, it leaves a larger volume to liquidate when ∆𝑝𝑡 reaches 

higher prices. The same occurrence happens to an extent at stage Y of the logistic model, but 

given the nature of exponential increase, revenue is maximised by exponential movements of 

𝐿(∆𝑝). 

Upon further analysis, it must be noted that 𝑛 > 1 at the very least for the exponential model to 

have a non-constant derivative. In general, the higher the value of 𝑛, the greater 𝐿′(∆𝑝) as ∆𝑝 →

𝑇, and the lower ∆𝑝 values are, the lower the rate of change. To maximise the revenue generated 

by the power model compared to the exponential model, the derivative of the power model at 

∆𝑝 = 𝑇 must be greater than the derivative of the exponential model. This adheres to the 

criterion as the derivative of the power model is both increasing and higher than the exponential 

model when∆𝑝 → 𝑇. By substituting ∆𝑝 = 𝑇 into (50) and (52), we solve the following 

inequality for 𝑛 using technology.  

(100 −𝑚)(𝑛 + 1)𝑇𝑛

𝑇𝑛+1
> −

𝑚 (ln(𝑚) − ln(100)) × 100

𝑇 × (𝑚
1
𝑇)
𝑇  

(54) 
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(100 − 𝑚)(𝑛 + 1)𝑇𝑛

𝑇𝑛+1
> −

(ln(𝑚) − ln(100)) × 100

𝑇
 

(55) 

For analytical purposes, let the inequality above simplify to 𝑛 > 𝑢 such that 𝑢 > 2. As 𝑛 

increases, the actual ∆𝑝 at which  

(100 − 𝑚)(𝑛 + 1)∆𝑝𝑛

𝑇𝑛+1
>
−𝑚(ln(𝑚) − ln(100)) × 100(

∆𝑝
𝑇
)

𝑇 × (𝑚
1
𝑇)
∆𝑝  

(56) 

increases: the larger the value of 𝑛, the value of 
(100−𝑚)(𝑛+1)∆𝑝𝑛

𝑇𝑛+1
is lower for smaller values of ∆𝑝. 

By virtue of the derivatives, we may conclude that the general equation for the model that 

maximises revenue is: 

𝐿(∆𝑝) =
(100−𝑚)(𝑛+1)∆𝑝(𝑛+1)

𝑇(𝑛+1)(𝑛+1)
+𝑚 such 

that𝑛 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑐𝑡𝑖𝑛𝑔 𝑎𝑠 𝑎𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡) 𝑖𝑠𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑢 where𝑢 is the minimum value of 𝑛 

at which 𝐿′(∆𝑝) =
−(𝑙𝑛(𝑚)−𝑙𝑛(100))×100

𝑇
 

Thus, the exponential model is the most suitable model for partial liquidation. This conclusion is 

also quite logical as one should sell more at higher prices compared to lower prices and the 

greater the amount sold at higher prices, the greater the revenue thus volume sold should rise 

exponentially with respect to increases in ∆𝑝 in relation to 𝑇.  

Conclusion: To conclude, a variety of mathematical models can be used to model a relationship 

between the proportion of a tradeable asset liquidated and the increase in the price of the asset. 

However, the most optimum relationship between 𝐿(∆𝑝) and ∆𝑝 is exponential as in an 

exponential relationship, the derivative is maximised at the highest value of ∆𝑝. The value of 𝑛 

becomes the principal determinant for the amount liquidated and must be set such that the first 

derivative of the extended model is greater than that of the exponential model. The ideal model 

as per the assumptions and conditions established throughout the investigation is: 

𝐿(∆𝑝) =
(100−𝑚)(𝑛+1)∆𝑝(𝑛+1)

𝑇(𝑛+1)(𝑛+1)
+𝑚 such 

that𝑛 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑐𝑡𝑖𝑛𝑔 𝑎𝑠 𝑎𝑛 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡)𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑢 where 𝑢 is the minimum value of 

𝑛 at which 𝐿′(∆𝑝) =
−(𝑙𝑛(𝑚)−𝑙𝑛(100)×100

𝑇
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As far as risk is involved, a differential equation can be enhanced using technology to give a 

particular solution that considers risk. Given that the model only treats positive changes in prices 

which are less than a threshold value based on higher past price values, the model is best suited 

for short-term swing-trading or scalping as these are strategies that usually capitalise on 

relatively small, short term price increases; these situations resemble the domain of 𝐿(∆𝑝). 

Limitations: 

One of the main limitations of this modelling process is that it assumes that ∆𝑝 is always less 

than 𝑇. Although 𝑇 is rooted in previous values of the asset’s price, the model cannot account for 

situations where ∆𝑝 is greater than 𝑃. Similarly, if 𝑝0 is the singular highest price of the asset, 

then the modelling process fails as 𝑇 cannot be calculated. Moreover, besides the exponential 

function, at values where ∆𝑝 approaches 𝑇, the derivatives of all the derived functions are close 

to 0 especially at higher values of  𝑇 (like when 𝑇 is above 1000). This implies that the absolute 

rates of change are quite low which may be limiting to the maximisation of revenue for low 

values of ∆𝑝.  

With different applications, more modifications would arise which would further optimise the 

model. Given that 𝐿(∆𝑝) is a proportion, the model would be best suited for currencies, 

cryptocurrencies, and other tradeable assets where it is possible to liquidate proportions. For 

example, half a share cannot be traded. The models listed above are fixed depending on 𝑇 and 𝑚. 

The only model that offers any type of flexibility is (29), which through integration allows for 

the consideration of risk that a trader undertakes based on their own thresholds and values of ∆𝑝 

at which a preferred % of 𝑉 can be liquidated. Given the low derivative of this model for values 

of ∆𝑝, 𝑠𝑡 is quite low which means that for low values of ∆𝑝, 𝐿(∆𝑝) is relatively low. Similarly, 

𝑠𝑡 may be less than 𝑚𝑉. This would result in 𝑅 being maximised only at high values of 𝑡. So, 

unless ∆𝑝 is near 𝑇, the exponential model generates less revenue. Depending on the values of 𝑚 

and 𝑇, the sinusoidal and logistic model may be appropriate. In general, however, the power is a 

better model as it has the potential for modification and is high yielding as ∆𝑝 → 𝑇. 

Moreover, traders may be deterred by the loss aversion bias as per behavioural economics. The 

loss aversion bias refers to the phenomenon in which humans are psychologically impacted more 

by loss as opposed to gain; this prompts deviations from rational decision making to decisions 

that minimise loss rather than maximising gain. If 𝑅𝑚 is low, revenues may be lower, and traders 

may experience a sense of loss before 𝑆𝑡 approaches 𝑉 which may lead to the trader deviating 

from the modelling process. Similarly, 𝑠𝑡 may be less than 𝑚𝑉 due to the low first derivative 

which makes trading unfeasible as in this instance, the amount liquidated is below the minimum 
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amount that must be liquidated in a particular trade.  In addition, this model assumes continuous 

liquidation. The only condition to consider liquidation is that ∆𝑝 > 0. This means that at some 

higher values of ∆𝑝, revenue earned may be lower due to the amount liquidated in previous 

trades.  Lastly, 𝐿(∆𝑝) may also be more maximising if 𝐿(∆𝑝) is linked to the probability of∆𝑝 

being in a particular range of values. The higher the probability of ∆𝑝 being at a particular value, 

the higher the amount liquidated. This model may be more realistic considering values of ∆𝑝 at a 

particular time and moment.  

Future Scope: 

With further testing involving real-world assets and values of 𝑇 and 𝑚, the overall liquidation 

process can be refined. An interesting angle to research could be relating 𝐿(∆𝑝) to different 

probabilities of an asset changing by particular ∆𝑝 values. Markov Chains and probability 

distributions could be applied to the same. This would result in a more relevant function as it 

would be rooted in probable values of ∆𝑝 rather than optimisation through rates of change. All in 

all, this investigation exemplifies how standard mathematical functions have applications in the 

financial world and how different models and approaches interact to produce a method for 

maximising gain. 
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