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ABSTRACT 

This research investigates the performance of Echo State Networks (ESN) in forecasting 

financial metrics and compares their effectiveness against traditional recurrent neural network 

(RNN) architectures like Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 

(GRU), as well as Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) 

models. By analyzing datasets sourced from Yahoo Finance for various financial indices, 

exchange-traded funds and stocks over five years, this study examines the accuracy, and 

structural simplicity of ESNs in predicting close prices, daily volatility, and log returns. Results 

indicate that ESNs, with their reservoir computing capabilities, outperform traditional RNNs by 

achieving lower mean absolute error (MAE) and mean squared error (MSE) overall, 

highlighting their potential as efficient and robust tools for financial time-series forecasting. 

Introduction  

In the fast-paced and complex world of financial markets, the accurate forecasting of stock 

prices, volatility, and other financial metrics is crucial for investors, analysts, and policymakers. 

These forecasts influence investment strategies, risk management, and market understanding. 

Traditionally, various models, including linear regressions and more sophisticated neural 

networks, have been employed to tackle the challenges of financial time-series forecasting. 

However, issues such as high computational costs, slow convergence rates, and the complexity 

of network architectures often undermine their efficacy.  

The advent of Echo State Networks (ESN), a type of RNN under the umbrella of reservoir 

computing, offers a promising alternative. Known for their simple structures and efficient data 
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processing1, ESNs reduce the need for intensive computational resources while maintaining the 

ability to capture complex nonlinear relationships inherent in financial data, and ability to 

become universal approximators for dynamic systems like the stock market. This study provides 

a comparative analysis of ESNs against traditional RNNs (LSTM and GRU) and GARCH 

models, focusing on their application in forecasting key financial metrics like close prices, daily 

volatility, and log returns across various financial entities and time horizons.  

Throughout the course of this investigation, ESNs demonstrated a significant advantage in 

predictive accuracy and operational efficiency, particularly in longer-term forecasting scenarios. 

Results revealed that ESNs achieved lower MSEs and MAEs compared to LSTM, GRU, and 

GARCH models overall, and outperformed their peers especially in close price prediction tasks. 

These findings underscore the potential of ESNs to act as a superior forecasting tool in financial 

markets, offering both speed and precision in a simplified architectural framework. 

Literature Review 

The use of Echo State Networks (ESNs) in financial modeling has seen significant advancements 

with both recent, and older studies demonstrating their potential to outperform traditional models 

in forecasting financial metrics like volatility and stock price. The first article from our literature 

review, published in 2021, introduces a novel hybrid model integrating the Echo State Network 

(ESN) with the Heterogeneous Autoregressive (HAR) model and Particle Swarm Optimization 

(PSO), referred to as HAR-PSO-ESN. This model leverages the quick adaptability of ESNs to 

capture complex patterns in time-series data while utilizing the feature design strengths of the 

HAR model and the optimization capabilities of PSO2. The study tested the model's effectiveness 

against traditional models like ARIMA and MLP using NASDAQ stock volatilities, 

demonstrating superior predictive performance with statistically significant improvements in R-

squared and mean squared error across multiple forecasting horizons. The second article from 

2014 explores the application of deterministic ESNs in stock price forecasting. Unlike typical 

ESNs that use randomly generated reservoirs, deterministic ESNs employ a pre-defined reservoir 

structure, which simplifies model construction and potentially enhances performance 

predictability and optimization. The study tested deterministic ESNs against standard ESNs 

                                                
1 Guang, Sun, et al. “Stock Price Forecasting: An Echo State Network Approach.” Semantic Scholar, 

National Natural Science Foundation of China, 2021, 

pdfs.semanticscholar.org/e3a7/2a2b7d6071461007112f12c8716529755d39.pdf.  
2 Ribeiro, Gabriel  Trierweiler et al. “Novel Hybrid Model Based on Echo State Neural Network Applied 

to the Prediction of Stock Price Return Volatility.”  Science Direct, National Council of Scientific and 

Technologic Development of Brazil, 29 June 2021,  
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using the Shanghai Composite Index and S&P 500 datasets3. Results indicated that deterministic 

ESNs, with their simpler and more predictable reservoir construction, outperformed standard 

ESNs in terms of forecasting accuracy and computational efficiency. Building on Existing Work 

Our research builds on these studies by extending the application of ESNs to a broader array of 

financial metrics and market conditions.  

While the first study successfully combined ESN with HAR and PSO to enhance volatility 

forecasting, our work explores a similar hybrid approach but extends the use of ESNs beyond 

just volatility to other financial metrics like close prices and log returns across different market 

indices and volatility levels. Moreover, our approach involves comparing the performance of 

ESNs not only with traditional models like GARCH and LSTM but also within different 

configurations of reservoir computing models, including the novel types of deterministic ESNs 

mentioned in the second study. This comparative analysis across a diverse set of financial 

metrics and model types offers deeper insights into the applicability and robustness of ESNs in 

financial forecasting, potentially paving the way for more targeted and effective financial 

decision-making tools. 

Background Information 

Echo State Networks (ESN) 

Introduced by Herbert in 20014, the Echo State Network (ESN) is a recurrent neural network 

(RNN) variant that leverages a reservoir computing framework. Initially, ESNs were primarily 

theoretical constructs until their practical application in fields related to wireless communications 

began in 2004. Since then, substantial advancements have been made in refining the model. 

Traditional RNNs often suffered from instability, computational complexity, and slow 

convergence rates. In contrast, ESNs offer simpler computations, faster processing times, and 

shorter cycles, significantly enhancing time-series forecasting applications.  

The typical structure of an ESN includes input, reservoir, and output layers, as depicted in Figure 

1. This structural model comprises H input nodes, N reservoir processing neurons, and L output 

nodes.  

                                                
3 Fang, Bin. “Deterministic Echo State Networks Based Stock Price ...” ResearchGate, Fundamental 

Research Funds for the Central Universities in China, 2014, 

www.researchgate.net/publication/275468711_Deterministic_Echo_State_Networks_Based_Stock_Price

_Forecasting.  
4 Jaeger, Herbert. “(PDF) the" Echo State" Approach to Analysing and Training Recurrent Neural 

Networks-with an Erratum Note’.” ResearchGate, 6 Dec. 2001, 
www.researchgate.net/publication/215385037_The_echo_state_approach_to_analysing_and_training_rec

urrent_neural_networks-with_an_erratum_note’.  
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Figure 1: Barebones ESN Architecture5 

 

The vectors for input stock data 𝑢, output prediction value 𝑦, and reservoir state space 𝑥 are 

defined by their respective dimensions m, n, and p: 

𝑢(𝑡)  =  (𝑢1(𝑡), . . . , 𝑢𝐻(𝑡)) 

𝑦(𝑡)  =  (𝑦1(𝑡), . . . , 𝑦𝐿(𝑡)) 

𝑥(𝑡)  =  (𝑥1(𝑡), . . . , 𝑥𝑁(𝑡)) 

The connections within the ESN are defined by several matrices:  

 Input to reservoir weights (𝑊𝑖𝑛 ): An N x K matrix.  

 Feedback weights from the output to the reservoir (𝑊𝑏𝑎𝑐𝑘): An N x L matrix.  

 Internal connections within the reservoir (𝑊): An N x N matrix.  

 Output weights (𝑊𝑜𝑢𝑡): An L x (K + N + L) matrix, connecting the reservoir to the output 

layer units.  

Unlike traditional neural networks, the matrices 𝑊𝑖𝑛 , 𝑊 , and 𝑊𝑏𝑎𝑐𝑘   in an ESN are initialized 

randomly at the network's inception and typically do not require further training beyond the 𝑊𝑜𝑢𝑡 

matrix. The reservoir updates its state with each new input using the state update equation, and 

the output is determined through a state output equation. This setup minimizes the need for 

extensive training, making ESNs particularly efficient for handling complex time-series 

predictions. Reservoir computing frameworks like ESNs are known for their ability to become 

                                                
5 Li, Gang, et al. “Echo State Network with Bayesian Regularization for Forecasting Short-Term Power 
Production of Small Hydropower Plants.” MDPI, Multidisciplinary Digital Publishing Institute, 27 Oct. 

2015, www.mdpi.com/1996-1073/8/10/12228/htm.  
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universal approximators for dynamical systems6 such as the stock market - an intriguing quality 

that initially motivated this research. 

Long Short Term Memory Networks (LSTM) 

Long Short-Term Memory networks (LSTMs) are a special kind of Recurrent Neural Network 

(RNN) capable of learning long-term dependencies in data sequences. They were introduced by 

Sepp Hochreiter and Jürgen Schmidhuber in 1997 to address the vanishing gradient problem 

commonly associated with standard RNNs. As seen in Figure 3, the LSTM introduces gates that 

regulate the flow of information, including the input gate, forget gate, and output gate.  

Figure 2: Barebones LSTM Architecture7 

 

 Forget Gate (𝐹𝑡): Decides what information to discard from the cell state. It looks at the 

previous hidden state (𝐻𝑡−1) and the current input 𝑋𝑡, and applies a sigmoid function to 

determine the portions of the cell state to be removed. 

 Input Gate (𝐼𝑡): Decides what new information to store in the cell state. This gate includes 

a sigmoid layer that updates the cell state values and a tanh layer that creates a vector of 

new candidate values, (𝐶�̂�), that could be added to the state.  

                                                
6 Li, Zhen, and Yunfei Yang. “Universality and Approximation Bounds for Echo State Networks with 

Random Weights.” arXiv.Org e-Print Archive, 6 Dec. 2022, arxiv.org/pdf/2206.05669v1.  
7 “10.1. Long Short-Term Memory (LSTM” 10.1. Long Short-Term Memory (LSTM) - Dive into Deep 

Learning 1.0.3 Documentation, d2l.ai/chapter_recurrent-modern/lstm.html. Accessed 12 May 2024.  
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 Cell State (𝐶𝑡): This is the "memory" part of the LSTM, modified by the forget gate and 

input gate. The old state (𝐶𝑡−1) is multiplied by the forget gate's output, and then the 

input gate's output is added, which involves adding the candidate values scaled by how 

much new information we decided to include.  

 Output Gate (𝑂𝑡): Determines the next hidden state, which contains filtered information 

from the cell state used for predictions. The cell state is passed through a tanh function 

(to normalize values between -1 and 1), and then it is multiplied by the output of the 

sigmoid gate on the hidden state and input, deciding which parts of the cell state make it 

to the output. 

This architecture allows them to effectively handle long-term dependencies and avoid the 

vanishing gradient problem that plagues standard RNNs. Consequently, LSTMs are particularly 

suited for tasks requiring memory of sequential data8, such as time-series prediction, natural 

language processing, and complex decision-making processes. In this research paper, LSTMs are 

employed for their proficiency in modeling financial time series, where understanding long-term 

dependencies is crucial for accurate forecasting and risk assessment, making for a solid 

benchmark to compare ESNs to. 

Gated Recurrent Units (GRU) 

Gated Recurrent Units, commonly known as GRUs, were introduced by Cho et al. in 20149 as a 

streamlined alternative to the more intricate Long Short-Term Memory (LSTM) networks. 

Designed to capture long-range dependencies within sequence data, GRUs consolidate the 

functionality of the forget and input gates of an LSTM into one unified "update gate." as seen in 

Figure 3. Additionally, GRUs combine the cell state and hidden state into a singular state, 

thereby reducing computational demands compared to LSTMs while maintaining comparable 

efficacy. The inclusion of GRUs in this comparative analysis is primarily motivated by their 

simplified architecture, a feature that aligns well with the principles of common reservoir 

computing frameworks. While the simpler architecture does reduce training times, it may bring 

forth underfitting issues when dealing with complex systems like the stock market. The GRU 

model type was chosen for this research as its relative simplicity compared to LSTMs is 

reminiscent of the ESNs aforementioned architectural simplicity, where a comparison in this 

sense might provide additional insights. 

                                                
8 Shinde, Sagar et al. “Stock Price Prediction Using LSTM.” IEEE Xplore , IEEE, 2023, 

ieeexplore.ieee.org/document/10392023.  
9 Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical 

machine translation." arXiv preprint arXiv:1406.1078 (2014) 
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Figure 3: Barebones GRU Architecture10 

 

Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was 

introduced by Tim Bollerslev in 198611 who built upon the earlier work by Robert Engle, who 

introduced the Autoregressive Conditional Heteroskedasticity (ARCH) model in 198212. 

Bollerslev's GARCH model extended the ARCH model to provide a more flexible and robust 

framework for modeling and forecasting time-varying volatility, which has since become a 

widely used benchmark in the analysis of financial time series - specifically, forecasting daily 

volatility. The GARCH(p, q) model can be represented with the following equations, where 𝑝 p 

and 𝑞 q denote the order of the GARCH and ARCH terms respectively:13 

𝜎𝑡
2 =  𝛼0  +  ∑

𝑞

𝑖=1

𝛼𝑖𝜖𝑡−𝑖
2 + ∑

𝑝

𝑗=1

𝛽𝑗𝜎𝑡−𝑗
2  

 𝜎𝑡
2

  : Conditional variance of the current time period. 

                                                
10 Malingan, Navaneeth. “Gated Recurrent Unit (GRU).” Scaler Topics, Scaler Topics, 22 Feb. 2023, 

www.scaler.com/topics/deep-learning/gru-network/.  
11 Bollerslev, Tim, 1986. "Generalized Autoregressive Conditional Heteroskedasticity," Journal of 

Econometrics, Elsevier, vol. 31(3), pages 307-327. 
12 Engle, Robert, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of 

United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007. 
13 Zivot, Eric. “10.2 Bollerslev’s GARCH Model.” BookDown, 11 June 2021, 

bookdown.org/compfinezbook/introcompfinr/bollerslevs-garch-model.html.  
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 𝜖𝑡
2

 : Residual at time 𝑡, which is the difference between the actual return and the expected 

return. 

 𝛼0 : Constant term.  

 𝛼𝑖 : Coefficients of the ARCH terms (lagged squared residuals).  

 𝛽𝑗  : Coefficients of the GARCH terms (lagged conditional variances). 

While the ARCH term captures the impact of the previous time periods' forecast errors on the 

current volatility and thus reflects short-term effects, the GARCH term represents the persistence 

of volatility, or the impact of past conditional variances on the current period's variance, showing 

the long-term effects and is key to capturing the clustering of volatility. As stated prior, the 

GARCH model type is chosen for this research as a benchmark for comparing the performance 

of ESNs in forecasting daily volatility. 

Methodology 

Experimental Data  

Nine datasets were used in this experiment, sourced from Yahoo! Finance's official website, 

comprising 1294 data points for each financial metric. This corresponds to five real life years, 

with the dates starting from October 15th, 2018, to December 6th, 2023.To test the performance 

of the models across varying market conditions, we strategically selected three types of financial 

metrics from each level of market volatility and analyzed them for additional insights into model 

performance. 

Dataset Composition and Derivation of Financial Metrics:  

The datasets are categorized into three distinct types, each representing different segments of the 

financial markets:  

1. Market-Level Indices (Moderate to High Volatility):  

 NASDAQ 

 NYSE (New York Stock Exchange).  

 SPX (S&P 500) 

2. Exchange-Traded Funds (ETFs):  
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 Invesco QQQ 

 IShares 

 Vanguard 

3. Single Stocks (Varied Volatility):  

 Amazon (AMZN) 

 Google (Alphabet Inc.) 

 Apple (AAPL) 

By considering varying levels of volatility, additional insights can be made when analyzing 

model performance. 

Calculation of Additional Financial Indicators:  

To enhance our dataset, we manually derived two key financial metrics using formulas in Google 

Sheets:  

Daily Volatility: Calculated using the formula 
𝐻𝑖𝑔ℎ−𝐿𝑜𝑤

𝐶𝑙𝑜𝑠𝑒
, this metric measures the intraday price 

movement relative to the closing price.  

Log Returns: Determined by 𝑙𝑛(
𝐶𝑙𝑜𝑠𝑒

𝑂𝑝𝑒𝑛
), this metric captures the relative price change from one 

day to the next in a format suitable for models that assume normally distributed returns.  

The metrics used to compare the performance of ESNs against traditional RNNs were Close 

Price, Daily Volatility, and Log Returns.  Closing prices are critical in financial markets as they 

represent the final agreed-upon price at the end of the trading day, reflecting the day’s conclusive 

market sentiment. Log Returns simplify the aggregation of returns over time, making them 

especially useful in portfolio management and risk assessment. Daily Volatility provides a 

snapshot of the day’s price stability or risk, offering insights into market uncertainty that are vital 

for risk management and trading strategies. Each of the chosen metrics capture different aspects 

of market dynamics—stability, trend, and risk—which are crucial for robust financial analysis 

and modeling.  

Exploratory Data Analysis 

This section provides a quick overview of the collected datasets, showing all columns, rows, and 

an exemplary heatmap for the SP500 dataset: 
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Raw Dataset (Fig. 4): 

 

Derived Dataset (Fig. 5) 

Metric Formula Description 

Log Returns 𝑙𝑛(
𝐶𝑙𝑜𝑠𝑒

𝑂𝑝𝑒𝑛
) Measures the change in price over 

the trading day. 

Daily Volatility 

𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤

𝐶𝑙𝑜𝑠𝑒
 

 

Provides a relative measure of the 

intraday price range, indicative of 

the stock's stability or risk during 

the trading day. 

 

Column Name Description 

Date The specific trading day for each entry. 

Open 
The opening price of the stock at the beginning of the 

trading day. 

High 
The highest price at which the stock traded during the 

trading day. 

Low 
The lowest price at which the stock traded during the 

trading day. 

Close 
The closing price of the stock at the end of the 

trading day. 

Adj Close 
Adjusted closing price, modified for corporate 

actions like dividends, splits. 

Volume Total number of shares traded during the trading day. 
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Correlation Heatmap (Fig. 6) 

 

The correlation heatmap above provides a visual representation of the statistical correlations 

between different metrics in the dataset. Shades of blue indicate positive correlation, while 

shades of red indicate negative correlation, with intensity reflecting the strength of the 

relationship.  

 Close and Volume: Shows a near-zero correlation suggesting that the day’s trading 

volume does not necessarily affect the closing price significantly.  

 Daily Volatility and Log Returns: Exhibits a positive correlation (0.61), indicating that 

days with higher volatility tend to have larger movements in log returns, reflecting higher 

risk and return potential.  

 Volume and Log Returns: Shows a slightly negative correlation (-0.09), hinting that 

higher trading volumes might slightly coincide with lower price changes over the day. 
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Data Preprocessing 

Before experimentation, the datasets underwent specific data preprocessing steps to ensure 

quality and consistency. These steps are crucial for handling missing values, capping outliers, 

and correcting invalid data entries, which can significantly influence the outcomes of time series 

forecasting models. 

1. Handling Missing Values: 

 Checked each dataset for the presence of null or missing values across all columns. 

2. Capping Outliers in 'Daily Volatility': 

 Financial datasets sometimes exhibit extreme volatility, which can distort predictive 

modeling. To address this, identified values in the 'Daily Volatility' column 

exceeding an extreme value (100). 

3. Correcting Non-Positive Values in Price Columns: 

 For the 'Open', 'High', 'Low', and 'Close' price columns, it is essential that all entries 

are positive, as negative or zero values are not feasible in this context. Screened 

these columns for non-positive values.  

No issues related to the aforementioned checks were found within any of the datasets collected 

and derived from Yahoo Finance. 

Evaluation Metrics 

The assessment of the performance of various predictive models was conducted by evaluating 

the mean absolute error (MAE) and mean squared error (MSE) between predicted and observed 

values. 

Mean Squared Error (MSE): MSE is a metric that evaluates the average of the squares of the 

errors, effectively assessing the variance between predicted values and observed data points. It is 

calculated by the formula: 

𝑀𝑆𝐸 =  
1

𝑛
∑

𝑛

𝑖=1

(𝑌𝑖 − �̂�𝑖)
2 
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Where (n) is the number of data points, (𝑌𝑖) represents the actual observed values, (�̂�𝑖) represents 

the predicted values by the model. The squaring of the errors in MSE significantly penalizes 

larger discrepancies between the predicted and actual values. 

Mean Absolute Error (MAE): MAE measures the average magnitude of errors in predictions, 

without considering the direction of these errors (i.e., whether they are positive or negative). It is 

defined as:xx 

𝑀𝐴𝐸 =  
1

𝑛
∑

𝑛

𝑖=1

|𝑌𝑖 − �̂�𝑖|
2
 

Where, |𝑌𝑖 − �̂�𝑖
|2is the absolute error between the model's prediction and the actual value for each 

instance in the dataset. Unlike MSE, MAE is less influenced by outliers as it does not square the 

error values. 

Hyperparameter Optimization 

This section elaborates on the specific methods used to fine-tune each model and the rationale 

behind the selection of certain hyperparameters. 

The common framework for our hyperparameter tuning involved Cross-Validation Grid Search 

(CVGS), a robust method for model optimization. CVGS evaluates a grid of hyperparameter 

combinations and selects the combination that performs best, according to a predefined metric, in 

our case Mean Squared Error (MSE) . This process helps in identifying the most effective model 

settings that minimize forecasting errors on unseen data. 

GARCH Model Tuning  

For the GARCH model, primarily used for time series analysis of financial data where volatility 

clustering is evident, we tuned the lag order parameters 𝑞 and 𝑝: 

● p: Number of lag observations included in the model (autoregressive terms).  

● q: Number of lag forecast errors in the prediction equation (moving average terms).  

The tuning involved iterating over a range of values for 𝑞 and 𝑝 from 1 to 3, fitting the GARCH 

model to the data, and selecting the parameters that resulted in the lowest Akaike Information 

Criterion (AIC), indicative of the best fit with minimal information loss.  

ESN Model Tuning  
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For the ESN models, tuning involved the following hyperparameters:  

 Reservoir size (number of neurons): Influences the capacity and memory of the 

network.  

 Spectral radius: Affects the stability and dynamics of the network state.  

 Sparsity: Determines the percentage of zero-weight connections in the reservoir.  

 Noise: Adds stochasticity to the state updates, promoting robustness.  

Each combination's performance was assessed using MSE.  

GRU and LSTM Model Tuning  

For the GRU and LSTM models, which are types of recurrent neural networks effective in 

capturing temporal dependencies in sequence data, we optimized:  

 Number of neurons (units in LSTM or GRU layers): Controls the model's complexity and 

ability to learn from data.  

 Dropout rate: Regularization parameter to prevent overfitting by randomly dropping 

units during training.  

 Input sequence length (window size for input features): Impacts how much past 

information the model considers for forecasting. 

Similar to ESN, each combination's performance was assessed using MSE.  

For each model, the tuning process was repeated for the target variables  'Close', 'Daily 

Volatility', and 'Log Returns', considering different prediction horizons (1, 5, 18, 30, 72 days into 

future). 

Experimental Settings 

Prior to the training phase, the dataset was divided into two separate segments: an 80% training 

set and a 20% testing set. The larger portion, the training set, was employed to train the models 

on the intrinsic patterns present within the financial data. The smaller segment, the testing set, 

was reserved solely for assessing the effectiveness of the models after training. The model 

hyperparameters for train/test phase were obtained from the aforementioned Cross Validation 

Grid Search algorithm. 
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The operating environment was Python 3.10 and Google Colaboratory (a hosted Jupyter 

notebook service) on Windows 10 (64 bit). We used the pandas library to read the datasets and 

conduct experiments, the arch library to build GARCH models, the tensorflow.keras library to 

build LSTM and GRU models, and the ESN class code was imported from the Pytorch-ESN 

module14. 

Results 

Given the five prediction horizons -  (1,5,18,30,72 days into future) - for three financial metrics - 

Close Price, Daily Volatility, Log Returns - the number of result tables amounted to fifteen.  

Given the sheer number of data tables, a binary best/worst system color coded by “green” and 

“red” was used to compare model performances for the prediction tasks. For each task, the model 

with the lowest MSE and MAE was coded “green”, while the model with the highest MSE and 

MAE was coded “red”. The system is exemplified as follows (all other tables are found in the 

Appendix): 

Table 4 (Close Price Prediction, 30th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 4.19 2.05 254 15.0 6.43 2.05 8.24 2.30 

Google 43.7 6.61 914 29.9 9.54 2.54 42.4 6.14 

Apple 139 11.8 1400 36.5 32.2 4.72 409 19.5 

NASDAQ 7380000 2720 4590000 2070 191000 365 252000 417 

SP500 393 19.8 105000 289 24600 136 28000 144 

NYSE 13100 115 239000 417 90800 233 162000 351 

ISHARES 12.6 3.55 9490 95.4 37.0 4.99 58.8 6.79 

                                                
14 Onardo, Stefan. “Pytorch-Esn/Torchesn/Nn/Echo_state_network.Py at Master · Stefanonardo/Pytorch-
ESN.” GitHub, 2018, github.com/stefanonardo/pytorch-

esn/blob/master/torchesn/nn/echo_state_network.py.  
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QQQ 21.6 4.65 4740 67.1 115 9.14 60.0 6.31 

VANGUARD 0.533 0.730 9.77 2.38 2.45 1.22 13.5 3.22 

 

Table 7 (Daily Volatility Prediction, 5th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.87 ⋅ 10−4 1.37 ⋅ 10−2 7.62 ⋅ 10−5 7.4 ⋅ 10−3 3.33 ⋅ 10−5 4.61 ⋅ 10−3 1.00 ⋅ 10−4 8.05 ⋅ 10−3 

Google 7.86 ⋅ 10−6 2.80 ⋅ 10−3 6.80 ⋅ 10−5 7.82 ⋅ 10−3 4.46 ⋅ 10−4 1.07 ⋅ 10−2 3.62 ⋅ 10−5 4.04 ⋅ 10−3 

Apple 7.28 ⋅ 10−6 2.70 ⋅ 10−3 4.56 ⋅ 10−5 6.27 ⋅ 10−3 2.51 ⋅ 10−4 1.24 ⋅ 10−2 5.16 ⋅ 10−5 5.84 ⋅ 10−3 

NASDAQ 2.27 ⋅ 10−5 4.47 ⋅ 10−3 4.00 ⋅ 10−6 1.64 ⋅ 10−3 6.05 ⋅ 10−5 7.52 ⋅ 10−3 2.08 ⋅ 10−5 3.50 ⋅ 10−3 

SP500 1.48 ⋅ 10−6 1.21 ⋅ 10−3 1.14 ⋅ 10−5 2.85 ⋅ 10−3 1.99 ⋅ 10−5 4.12 ⋅ 10−3 1.97 ⋅ 10−5 3.87 ⋅ 10−3 

NYSE 4.49 ⋅ 10−6 2.23 ⋅ 10−3 5.91 ⋅ 10−6 2.23 ⋅ 10−3 3.17 ⋅ 10−5 4.09 ⋅ 10−3 1.01 ⋅ 10−5 2.81 ⋅ 10−3 

ISHARES 8.41 ⋅ 10−5 9.17 ⋅ 10−3 7.15 ⋅ 10−6 2.45 ⋅ 10−3 4.79 ⋅ 10−5 5.84 ⋅ 10−3 3.92 ⋅ 10−5 4.87 ⋅ 10−3 

QQQ 3.47 ⋅ 10−5 5.89 ⋅ 10−3 1.01 ⋅ 10−5 2.79 ⋅ 10−3 4.03 ⋅ 10−5 6.16 ⋅ 10−3 9.42 ⋅ 10−5 9.10 ⋅ 10−3 

VANGUARD 4.13 ⋅ 10−5 6.42 ⋅ 10−3 7.10 ⋅ 10−6 2.41 ⋅ 10−3 5.85 ⋅ 10−5 5.55 ⋅ 10−3 1.90 ⋅ 10−5 3.82 ⋅ 10−3 
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Table 14 (Log Returns Prediction, 30th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 2.72 ⋅ 10−5 5.21 ⋅ 10−3 4.59 ⋅ 10−4 1.53 ⋅ 10−2 4.83 ⋅ 10−4 1.88 ⋅ 10−2 4.83 ⋅ 10−4 1.87 ⋅ 10−2 

Google 8.44 ⋅ 10−4 2.91 ⋅ 10−2 4.96 ⋅ 10−4 1.38 ⋅ 10−2 3.91 ⋅ 10−4 1.47 ⋅ 10−2 3.90 ⋅ 10−4 1.49 ⋅ 10−2 

Apple 2.18 ⋅ 10−4 1.48 ⋅ 10−2 1.23 ⋅ 10−4 8.93 ⋅ 10−3 4.51 ⋅ 10−4 1.69 ⋅ 10−2 4.52 ⋅ 10−4 1.69 ⋅ 10−2 

NASDAQ 2.61 ⋅ 10−5 5.11 ⋅ 10−3 1.08 ⋅ 10−4 7.58 ⋅ 10−3 2.51 ⋅ 10−4 1.25 ⋅ 10−2 2.51 ⋅ 10−4 1.23 ⋅ 10−2 

SP500 6.18 ⋅ 10−7 7.86 ⋅ 10−4 6.21 ⋅ 10−5 5.74 ⋅ 10−3 1.53 ⋅ 10−4 9.43 ⋅ 10−3 1.54 ⋅ 10−4 9.45 ⋅ 10−3 

NYSE 2.22 ⋅ 10−6 1.49 ⋅ 10−3 6.21 ⋅ 10−5 6.08 ⋅ 10−3 1.14 ⋅ 10−4 8.68 ⋅ 10−3 1.13 ⋅ 10−4 8.65 ⋅ 10−3 

ISHARES 9.60 ⋅ 10−5 9.80 ⋅ 10−3 1.42 ⋅ 10−4 8.62 ⋅ 10−3 3.35 ⋅ 10−4 1.45 ⋅ 10−2 3.41 ⋅ 10−4 1.43 ⋅ 10−2 

QQQ 1.04 ⋅ 10−5 3.23 ⋅ 10−3 1.09 ⋅ 10−4 7.60 ⋅ 10−3 2.60 ⋅ 10−4 1.25 ⋅ 10−2 2.60 ⋅ 10−4 1.25 ⋅ 10−2 

VANGUARD 8.39 ⋅ 10−5 9.16 ⋅ 10−3 6.20 ⋅ 10−5 6.19 ⋅ 10−3 9.72 ⋅ 10−5 8.02 ⋅ 10−3 9.76 ⋅ 10−5 7.89 ⋅ 10−3 

 

By quantifying the relative success/failure of the different models, the following result analysis 

was possible: 
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Table 16 : Overview of Best Performing Models 

 1st day 5th day 18th day 30th day  72nd day  

Metric Best 

model 

B/W 

Ratio 

Best 

model 

B/W 

Ratio 

Best 

model 

B/W 

Ratio 

Best 

model 

B/W 

Rati

o 

Best 

model 

B/W 

Rati

o 

Close 

Price 

LSTM 7/0 ESN 4/0 ESN 3/0 ESN 6/1 ESN 5/2 

Daily 

Volatilit

y 

GARCH 5/0 GARCH 4/0 GARCH 6/0 GARCH 7/0 GARCH 8/0 

Log 

Returns 

LSTM 4/0 ESN 6/1 GARCH 5/0 ESN 6/1 GARCH 5/0 

*B/W Ratio = n times model was best (green)/n times model was worst (red) 

For a model to be qualified as “best”, they had to have the highest value of number of bests - 

number of worsts for a given task. Table 16 shows a high-level overview of the best performing 

models for each task. Two striking observations are that the Echo State Network (ESN) model 

outperforms its peers consistently for 80% of the Close Price forecasting tasks while being 

overshadowed by the GARCH model in Daily Volatility prediction tasks.  The ESN model 

shows particularly strong results for close price predictions over longer periods (30th and 72nd 

day) and for log returns on the 72nd day, indicating a strong capability in capturing longer-term 

dependencies in the data.  In the context of predicting close prices, the model's high performance 

despite longer prediction horizons could be attributed to its ability to forecast the intrinsic value 

of the stock/ETF/index rather than merely reacting to market sentiments. Despite being 

overshadowed by GARCH in daily volatility forecasting, the ESN model outperformed LSTM 

and GRU models consistently. 

Table 17 : Models & General Performance 

Model Number of Bests Number of Worsts 

ESN 52* 32 

GARCH 50 35 

LSTM 22 27 

GRU 11 35 
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Table 17 shows the cumulative number of bests vs. number of worsts for each model type. The 

ESN model has the highest total number of bests at 52, followed closely by the GARCH model 

at 50, and a steep drop off to 22 and 11 with LSTM and GRU models. It’s important to note that 

while the GARCH model, based on this table, looks to be generally performing close to the ESN 

model - a large majority of these “bests” are from daily volatility forecasting tasks (30/50). Thus, 

it appears that the ESN outperforms its peers in financial metric forecasting. This is especially 

interesting, as the architecturally simplest model, the ESN, performs better than more complex 

models like LSTM and GRU, highlighting its aforementioned ability to become universal 

approximators for dynamic systems like the stock market. 

The proficient forecasting capabilities of Echo State Networks (ESNs) in predicting financial 

metrics can be transformative for various players within the financial sector. Investment analysts 

and fund managers can significantly benefit from the ESN's accuracy in predicting long-term 

price movements, utilizing these insights to refine investment strategies and enhance portfolio 

returns. Risk managers may leverage the ESN's ability to forecast log returns and close prices 

over different periods to enhance risk assessment and management strategies, particularly in 

volatile environments. For retail investors, the ESN offers a tool to base trading decisions on the 

intrinsic value of assets rather than market sentiment, potentially leading to more informed and 

successful investment choices. 

Future Work 

The promising results of Echo State Networks (ESN) in forecasting daily financial metrics raise 

several questions and opportunities for further research. Future investigations could explore the 

versatility and robustness of ESNs across different applications and conditions: 

1. High-Frequency Data Analysis: It remains to be seen whether ESNs maintain their 

performance advantage in environments characterized by high-frequency trading data, 

such as minute-by-minute or hourly price updates. Analyzing ESNs in such settings could 

provide insights into their adaptability and effectiveness in capturing rapid market 

dynamics. 

2. Diverse Asset Classes: Extending the application of ESNs beyond stocks and indices to 

include a broader range of asset classes such as bonds, cryptocurrencies, real estate, 

alternative assets, and commodities (i.e. gold and silver) would help in understanding the 

model's effectiveness across different investment domains. This would also allow for a 

comprehensive analysis of how ESNs handle various asset behaviors and risk profiles. 

3. Portfolio Application and Correlation Analysis: Investigating the implications of using 

ESNs in portfolio management, particularly how they predict the correlation and log 



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:09, Issue:06 "June 2024" 

 

www.ijsser.org                              Copyright © IJSSER 2024, All rights reserved Page 1969 
 

returns of different assets under varying market volatility levels, could be highly 

beneficial. This research could lead to better risk management strategies and enhanced 

decision-making processes in portfolio optimization, especially in complex and 

fluctuating financial environments. 

Conclusions 

Financial metric forecasting has time-series features. ESNs are a newer type of RNN that utilize 

reservoir computing features. LSTM, GRU, and GARCH are RNNs widely used for predicting 

financial metrics. The GARCH model, while exceptional in modeling daily volatility, often did 

not perform as well in other financial metrics, highlighting the specialized nature of GARCH in 

handling volatility clustering. Conversely, LSTMs and GRUs, despite their architectural 

sophistication, did not consistently deliver superior performance - suggesting that a simplified 

LSTM/GRU architecture might perform better. The ESN models had the highest cumulative 

number of “bests”, and showed exceptional performance in close price forecasting. Further, the 

accuracy of ESNs, measured by MSE and MAE, didn’t drop off substantially when approaching 

longer prediction horizons, indicating a strong capability in capturing longer-term dependencies. 

Overall, the ESN outperformed its peers in financial metric forecasting. The ability of ESNs to 

approximate dynamic systems effectively makes them particularly suitable for financial markets, 

where predicting future values involves understanding both the underlying patterns and potential 

irregularities within vast datasets. In future work, we aim to narrow the research’s focus on one 

metric, and analyze a higher number of prediction horizons to paint a more accurate picture of 

model performance for a specific task. 
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Appendix 

Table 1 (Close Price Prediction, 1st day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 16.0 4.00 313.4 17.7 0.05 0.224 7.78 2.79 

Google 4.80 2.19 810.3 28.5 3.32 ⋅ 10−3 5.77 ⋅ 10−2 7.70 2.77 

Apple 37.8 6.15 2018.1 44.9 5.70 2.39 4.39 2.10 

NASDAQ 4.52 ⋅ 106 2.13 ⋅ 103 6.03 ⋅ 106 2457.2 1.66 ⋅ 104 1.29 ⋅ 102 1.66 ⋅ 105 4.08 ⋅ 102 

SP500 13042.3 114.2 1.70 ⋅ 105 411.9 3730.0 61.1 739.0 27.2 

NYSE 4.23 ⋅ 104 2.06 ⋅ 102 4.78 ⋅ 105 691.2 3390.0 58.3 7.62 ⋅ 104 2.76 ⋅ 102 

ISHARES 217 14.7 1.13 ⋅ 104 106.4 4.38 2.09 266.0 16.3 
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QQQ 138 11.7 5814.6 76.3 1.44 ⋅ 10−3 3.79 ⋅ 10−2 32.3 5.69 

VANGUARD 11.6 3.40 1.33 1.15 0.234 0.484 1.04 1.02 

 

Table 2 (Close Price Prediction, 5th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 41.4 6.43 364.1 19.1 2.73 1.36 3.36 1.58 

Google 15.4 3.93 864.2 29.4 49.7 5.57 30.2 5.31 

Apple 5.06 2.25 1927.1 43.9 7.89 2.47 6.57 2.09 

NASDAQ 9.68 ⋅ 105 9.84 ⋅ 102 6.40 ⋅ 106 2528.2 1.20 ⋅ 105 3.14 ⋅ 102 3.35 ⋅ 105 5.62 ⋅ 102 

SP500 1420.3 37.7 1.87 ⋅ 105 432.3 3420.0 58.2 5260.0 56.1 

NYSE 2.20 ⋅ 105 4.69 ⋅ 102 5.81 ⋅ 105 759.0 1.66 ⋅ 105 3.68 ⋅ 102 1.54 ⋅ 105 3.82 ⋅ 102 

ISHARES 83.6 9.14 1.23 ⋅ 104 110.5 219.0 12.1 577.0 23.5 

QQQ 41.9 6.47 6195.0 78.7 3.26 ⋅ 102 14.3 15.4 3.34 

VANGUARD 3.20 1.79 2.50 1.51 16.1 3.62 30.3 4.80 

 

Table 3 (Close Price Prediction, 18th day into future) 
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 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 93.0 9.64 347.6 18.6 83.8 7.82 5.62 1.90 

Google 59.5 7.71 1086.7 32.3 99.3 9.28 67.5 7.80 

Apple 321 17.9 1797.0 42.3 157 10.0 7.76 2.13 

NASDAQ 4.90 ⋅ 105 7.00 ⋅ 102 6.12 ⋅ 106 2469.4 9.02 ⋅ 104 2.52 ⋅ 102 3.21 ⋅ 106 1.57 ⋅ 103 

SP500 45225.2 212.7 1.57 ⋅ 105 393.3 4.79 ⋅ 104 194.8 2.32 ⋅ 104 135.0 

NYSE 2.83 ⋅ 105 5.32 ⋅ 102 2.96 ⋅ 105 493.5 6.64 ⋅ 105 7.40 ⋅ 102 1.51 ⋅ 106 1.08 ⋅ 103 

ISHARES 334 18.3 1.21 ⋅ 104 109.8 650.0 23.1 4810.0 61.7 

QQQ 394 19.8 6111.4 78.1 1.34 ⋅ 103 33.1 23.0 3.98 

VANGUARD 27.0 5.20 2.12 1.08 75.5 7.89 147.0 11.1 

 

Table 4 (Close Price Prediction, 30th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 4.19 2.05 254 15.0 6.43 2.05 8.24 2.30 

Google 43.7 6.61 914 29.9 9.54 2.54 42.4 6.14 
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Apple 139 11.8 1400 36.5 32.2 4.72 409 19.5 

NASDAQ 7380000 2720 4590000 2070 191000 365 252000 417 

SP500 393 19.8 105000 289 24600 136 28000 144 

NYSE 13100 115 239000 417 90800 233 162000 351 

ISHARES 12.6 3.55 9490 95.4 37.0 4.99 58.8 6.79 

QQQ 21.6 4.65 4740 67.1 115 9.14 60.0 6.31 

VANGUARD 0.533 0.730 9.77 2.38 2.45 1.22 13.5 3.22 

 

Table 5 (Close Price Prediction, 72nd day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 2.76 1.66 144 9.87 93.3 7.66 239 12.4 

Google 40.2 6.34 1040 32.0 106 8.24 177 11.8 

Apple 4.24 2.06 1120 32.8 523 18.4 2020 40.4 

NASDAQ 1760000 1330 3920000 1930 274000 440 285000 453 

SP500 63800 253 80900 258 14000 97.2 16900 106 

NYSE 1780000 1340 191000 368 1300000 943 113000 280 
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ISHARES 52.0 7.21 7910 87.5 1220 27.4 909 24.2 

QQQ 1.69 1.30 3940 61.5 280 14.1 1970 34.9 

VANGUARD 63.0 7.94 8.59 2.40 25.1 4.16 15.3 3.48 

 

Table 6 (Daily Volatility Prediction, 1st day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 6.06
⋅ 10−4 

2.46 ⋅ 10−2 5.78
⋅ 10−6 

2.40
⋅ 10−3 

3.18 ⋅ 10−5 5.64 ⋅ 10−3 2.85 ⋅ 10−6 1.69 ⋅ 10−3 

Google 4.18
⋅ 10−5 

6.94 ⋅ 10−3 2.51
⋅ 10−5 

5.01
⋅ 10−3 

6.94 ⋅ 10−6 2.63 ⋅ 10−3 1.50 ⋅ 10−4 1.23 ⋅ 10−2 

Apple 2.96
⋅ 10−5 

5.44 ⋅ 10−3 4.06
⋅ 10−5 

6.37
⋅ 10−3 

1.57 ⋅ 10−5 3.97 ⋅ 10−3 1.18 ⋅ 10−4 1.09 ⋅ 10−2 

NASDAQ 7.57
⋅ 10−6 

2.75 ⋅ 10−3 4.26
⋅ 10−9 

6.53
⋅ 10−5 

2.27 ⋅ 10−5 4.76 ⋅ 10−3 8.04 ⋅ 10−5 8.97 ⋅ 10−3 

SP500 2.00
⋅ 10−5 

4.47 ⋅ 10−3 5.57
⋅ 10−7 

7.47
⋅ 10−4 

1.09 ⋅ 10−5 3.30 ⋅ 10−3 3.46 ⋅ 10−5 5.88 ⋅ 10−3 

NYSE 8.21
⋅ 10−6 

2.86 ⋅ 10−3 2.75
⋅ 10−7 

5.25
⋅ 10−4 

9.34 ⋅ 10−7 9.66 ⋅ 10−4 9.04 ⋅ 10−6 2.83 ⋅ 10−3 

ISHARES 9.69
⋅ 10−6 

3.11 ⋅ 10−3 1.01
⋅ 10−5 

3.17
⋅ 10−3 

6.00 ⋅ 10−5 7.75 ⋅ 10−3 7.05 ⋅ 10−5 8.40 ⋅ 10−3 

QQQ 1.81
⋅ 10−5 

4.25 ⋅ 10−3 1.25
⋅ 10−9 

3.54
⋅ 10−5 

2.74 ⋅ 10−5 5.24 ⋅ 10−3 1.02 ⋅ 10−5 3.19 ⋅ 10−3 

VANGUARD 5.14
⋅ 10−5 

7.17 ⋅ 10−3 3.35
⋅ 10−6 

1.83
⋅ 10−3 

1.35 ⋅ 10−5 3.67 ⋅ 10−3 1.99 ⋅ 10−5 4.46 ⋅ 10−3 

 

Table 7 (Daily Volatility Prediction, 5th day into future) 
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 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.87
⋅ 10−4 

1.37
⋅ 10−2 

7.62 ⋅ 10−5 7.4 ⋅ 10−3 3.33 ⋅ 10−5 4.61 ⋅ 10−3 1.00 ⋅ 10−4 8.05 ⋅ 10−3 

Google 7.86
⋅ 10−6 

2.80
⋅ 10−3 

6.80 ⋅ 10−5 7.82
⋅ 10−3 

4.46 ⋅ 10−4 1.07 ⋅ 10−2 3.62 ⋅ 10−5 4.04 ⋅ 10−3 

Apple 7.28
⋅ 10−6 

2.70
⋅ 10−3 

4.56 ⋅ 10−5 6.27
⋅ 10−3 

2.51 ⋅ 10−4 1.24 ⋅ 10−2 5.16 ⋅ 10−5 5.84 ⋅ 10−3 

NASDAQ 2.27
⋅ 10−5 

4.47
⋅ 10−3 

4.00 ⋅ 10−6 1.64
⋅ 10−3 

6.05 ⋅ 10−5 7.52 ⋅ 10−3 2.08 ⋅ 10−5 3.50 ⋅ 10−3 

SP500 1.48
⋅ 10−6 

1.21
⋅ 10−3 

1.14 ⋅ 10−5 2.85
⋅ 10−3 

1.99 ⋅ 10−5 4.12 ⋅ 10−3 1.97 ⋅ 10−5 3.87 ⋅ 10−3 

NYSE 4.49
⋅ 10−6 

2.23
⋅ 10−3 

5.91 ⋅ 10−6 2.23
⋅ 10−3 

3.17 ⋅ 10−5 4.09 ⋅ 10−3 1.01 ⋅ 10−5 2.81 ⋅ 10−3 

ISHARES 8.41
⋅ 10−5 

9.17
⋅ 10−3 

7.15 ⋅ 10−6 2.45
⋅ 10−3 

4.79 ⋅ 10−5 5.84 ⋅ 10−3 3.92 ⋅ 10−5 4.87 ⋅ 10−3 

QQQ 3.47
⋅ 10−5 

5.89
⋅ 10−3 

1.01 ⋅ 10−5 2.79
⋅ 10−3 

4.03 ⋅ 10−5 6.16 ⋅ 10−3 9.42 ⋅ 10−5 9.10 ⋅ 10−3 

VANGUARD 4.13
⋅ 10−5 

6.42
⋅ 10−3 

7.10 ⋅ 10−6 2.41
⋅ 10−3 

5.85 ⋅ 10−5 5.55 ⋅ 10−3 1.90 ⋅ 10−5 3.82 ⋅ 10−3 

 

Table 8 (Daily Volatility Prediction, 18th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 3.16
⋅ 10−4 

1.78
⋅ 10−2 

5.03 ⋅ 10−5 6.20
⋅ 10−3 

9.84 ⋅ 10−5 6.78 ⋅ 10−3 4.41 ⋅ 10−4 2.33 ⋅ 10−2 

Google 6.45
⋅ 10−7 

8.03
⋅ 10−4 

4.82 ⋅ 10−5 6.09
⋅ 10−3 

2.08 ⋅ 10−4 8.35 ⋅ 10−3 1.16 ⋅ 10−4 8.22 ⋅ 10−3 
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Apple 1.83
⋅ 10−4− 

1.35
⋅ 10−2 

8.00 ⋅ 10−5 8.47
⋅ 10−3 

1.31 ⋅ 10−4 8.90 ⋅ 10−3 9.98 ⋅ 10−5 7.76 ⋅ 10−3 

NASDAQ 2.00
⋅ 10−4 

1.42
⋅ 10−2 

2.30 ⋅ 10−5 4.09
⋅ 10−3 

5.57 ⋅ 10−5 6.64 ⋅ 10−3 1.71 ⋅ 10−4 1.13 ⋅ 10−2 

SP500 5.11
⋅ 10−5 

1.21
⋅ 10−3 

2.25 ⋅ 10−5 4.08
⋅ 10−3 

3.31 ⋅ 10−5 4.45 ⋅ 10−3 3.32 ⋅ 10−5 4.45 ⋅ 10−3 

NYSE 1.90
⋅ 10−5 

4.35
⋅ 10−3 

2.38 ⋅ 10−5 4.02
⋅ 10−3 

1.02 ⋅ 10−4 8.37 ⋅ 10−3 8.81 ⋅ 10−5 7.91 ⋅ 10−3 

ISHARES 1.58
⋅ 10−4 

1.26
⋅ 10−2 

3.50 ⋅ 10−5 5.22
⋅ 10−3 

4.91 ⋅ 10−5 5.44 ⋅ 10−3 4.82 ⋅ 10−5 5.03 ⋅ 10−3 

QQQ 2.00
⋅ 10−4 

1.41
⋅ 10−2 

3.56 ⋅ 10−5 5.24
⋅ 10−3 

5.22 ⋅ 10−5 6.56 ⋅ 10−3 1.67 ⋅ 10−4 1.15 ⋅ 10−2 

VANGUARD 1.23
⋅ 10−5 

3.51
⋅ 10−3 

1.50 ⋅ 10−5 3.45
⋅ 10−3 

1.29 ⋅ 10−4 9.60 ⋅ 10−3 2.06 ⋅ 10−5 3.59 ⋅ 10−3 

 

Table 9 (Daily Volatility Prediction, 30th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.37
⋅ 10−4 

1.17
⋅ 10−2 

6.88 ⋅ 10−5 6.95
⋅ 10−3 

1.52 ⋅ 10−4 8.76 ⋅ 10−3 1.25 ⋅ 10−4 8.90 ⋅ 10−3 

Google 1.56
⋅ 10−5 

3.96
⋅ 10−3 

4.32 ⋅ 10−5 5.64
⋅ 10−3 

1.10 ⋅ 10−4 6.59 ⋅ 10−3 1.12 ⋅ 10−4 8.16 ⋅ 10−3 

Apple 9.62
⋅ 10−5 

9.81
⋅ 10−3 

6.68 ⋅ 10−5 7.37
⋅ 10−3 

1.12 ⋅ 10−4 8.42 ⋅ 10−3 1.10 ⋅ 10−4 8.72 ⋅ 10−3 

NASDAQ 1.00
⋅ 10−4 

1.00
⋅ 10−2 

1.96 ⋅ 10−5 3.61
⋅ 10−3 

6.82 ⋅ 10−5 6.17 ⋅ 10−3 6.61 ⋅ 10−5 6.65 ⋅ 10−3 

SP500 5.91
⋅ 10−5 

7.69
⋅ 10−3 

1.58 ⋅ 10−5 3.24
⋅ 10−3 

4.52 ⋅ 10−5 5.69 ⋅ 10−3 3.95 ⋅ 10−5 4.91 ⋅ 10−3 

NYSE 2.09
⋅ 10−5 

4.57
⋅ 10−3 

2.19 ⋅ 10−5 3.74
⋅ 10−3 

3.03 ⋅ 10−5 4.59 ⋅ 10−3 3.37 ⋅ 10−5 4.55 ⋅ 10−3 
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ISHARES 1.63
⋅ 10−4 

1.28
⋅ 10−2 

3.71 ⋅ 10−5 5.28
⋅ 10−3 

7.71 ⋅ 10−5 6.11 ⋅ 10−3 1.00 ⋅ 10−4 6.48 ⋅ 10−3 

QQQ 1.10
⋅ 10−4 

1.05
⋅ 10−2 

2.86 ⋅ 10−5 4.64
⋅ 10−3 

8.50 ⋅ 10−5 6.16 ⋅ 10−3 7.49 ⋅ 10−5 6.55 ⋅ 10−3 

VANGUARD 2.07
⋅ 10−5 

4.55
⋅ 10−3 

1.48 ⋅ 10−5 3.38
⋅ 10−3 

2.49 ⋅ 10−5 4.13 ⋅ 10−3 2.51 ⋅ 10−5 3.88 ⋅ 10−3 

 

Table 10 (Daily Volatility Prediction, 72nd day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.66
⋅ 10−6 

1.29
⋅ 10−3 

6.05 ⋅ 10−5 6.39
⋅ 10−3 

1.53 ⋅ 10−4 9.09 ⋅ 10−3 1.28 ⋅ 10−4 9.43 ⋅ 10−3 

Google 9.99
⋅ 10−5 

1.00
⋅ 10−2 

3.62 ⋅ 10−5 5.05
⋅ 10−3 

1.19 ⋅ 10−4 7.05 ⋅ 10−3 1.23 ⋅ 10−4 8.52 ⋅ 10−3 

Apple 6.61
⋅ 10−5 

8.13
⋅ 10−3 

5.25 ⋅ 10−5 6.17
⋅ 10−3 

1.19 ⋅ 10−4 8.97 ⋅ 10−3 1.50 ⋅ 10−4 1.07 ⋅ 10−2 

NASDAQ 2.33
⋅ 10−4 

1.53
⋅ 10−2 

2.12 ⋅ 10−5 3.79
⋅ 10−3 

4.97 ⋅ 10−5 5.42 ⋅ 10−3 6.44 ⋅ 10−5 6.81 ⋅ 10−3 

SP500 1.38
⋅ 10−4 

1.18
⋅ 10−2 

1.61 ⋅ 10−5 3.24
⋅ 10−3 

4.83 ⋅ 10−5 6.09 ⋅ 10−3 3.81 ⋅ 10−5 5.17 ⋅ 10−3 

NYSE 9.62
⋅ 10−5 

9.81
⋅ 10−3 

1.80 ⋅ 10−5 3.37
⋅ 10−3 

2.85 ⋅ 10−5 4.54 ⋅ 10−3 2.74 ⋅ 10−5 4.21 ⋅ 10−3 

ISHARES 3.10
⋅ 10−4 

1.76
⋅ 10−2 

3.31 ⋅ 10−5 4.77
⋅ 10−3 

5.76 ⋅ 10−5 5.83 ⋅ 10−3 6.66 ⋅ 10−5 5.64 ⋅ 10−3 

QQQ 1.82
⋅ 10−4 

1.35
⋅ 10−2 

2.62 ⋅ 10−5 4.33
⋅ 10−3 

6.11 ⋅ 10−5 5.52 ⋅ 10−3 5.66 ⋅ 10−5 6.05 ⋅ 10−3 

VANGUARD 3.16
⋅ 10−4 

1.78
⋅ 10−2 

1.34 ⋅ 10−5 2.95
⋅ 10−3 

2.38 ⋅ 10−5 3.89 ⋅ 10−3 2.37 ⋅ 10−5 3.72 ⋅ 10−3 

 

Table 11 (Log Returns Prediction, 1st day into future) 



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:09, Issue:06 "June 2024" 

 

www.ijsser.org                              Copyright © IJSSER 2024, All rights reserved Page 1979 
 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 7.65
⋅ 10−4 

2.77
⋅ 10−2 

2.94 ⋅ 10−4 1.71
⋅ 10−2 

2.26 ⋅ 10−5 4.75 ⋅ 10−3 1.13 ⋅ 10−3 3.36 ⋅ 10−2 

Google 8.83
⋅ 10−5 

9.40
⋅ 10−3 

6.75 ⋅ 10−5 8.22
⋅ 10−3 

1.38 ⋅ 10−5 3.71 ⋅ 10−3 7.73 ⋅ 10−4 2.78 ⋅ 10−2 

Apple 1.49
⋅ 10−3 

3.86
⋅ 10−2 

6.05 ⋅ 10−5 7.78
⋅ 10−3 

5.32 ⋅ 10−5 7.30 ⋅ 10−3 2.34 ⋅ 10−4 1.53 ⋅ 10−2 

NASDAQ 2.76
⋅ 10−4 

1.66
⋅ 10−2 

4.62 ⋅ 10−5 6.80
⋅ 10−3 

5.12 ⋅ 10−6 2.26 ⋅ 10−3 3.24 ⋅ 10−4 1.80 ⋅ 10−2 

SP500 9.06
⋅ 10−8 

3.01
⋅ 10−4 

2.27 ⋅ 10−5 4.76
⋅ 10−3 

5.93 ⋅ 10−6 2.44 ⋅ 10−3 2.30 ⋅ 10−4 1.52 ⋅ 10−2 

NYSE 1.60
⋅ 10−5 

4.00
⋅ 10−3 

6.37 ⋅ 10−6 2.52
⋅ 10−3 

7.43 ⋅ 10−6 2.73 ⋅ 10−3 1.89 ⋅ 10−4 1.37 ⋅ 10−2 

ISHARES 5.71
⋅ 10−5 

7.56
⋅ 10−3 

9.72 ⋅ 10−5 9.86
⋅ 10−3 

6.72 ⋅ 10−5 8.20 ⋅ 10−3 9.54 ⋅ 10−4 3.09 ⋅ 10−2 

QQQ 2.65
⋅ 10−4 

1.63
⋅ 10−2 

4.77 ⋅ 10−5 6.91
⋅ 10−3 

7.15 ⋅ 10−5 8.45 ⋅ 10−3 5.22 ⋅ 10−4 2.28 ⋅ 10−2 

VANGUARD 7.06
⋅ 10−6 

2.66
⋅ 10−3 

7.66 ⋅ 10−6 2.77
⋅ 10−3 

6.12 ⋅ 10−5 7.82 ⋅ 10−3 1.80 ⋅ 10−4 1.34 ⋅ 10−2 

 

Table 12 (Log Returns Prediction, 5th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.37
⋅ 10−3 

3.70
⋅ 10−2 

1.51 ⋅ 10−4 1.08
⋅ 10−2 

5.04 ⋅ 10−4 1.83 ⋅ 10−2 3.90 ⋅ 10−4 1.66 ⋅ 10−2 

Google 9.18
⋅ 10−5 

9.58
⋅ 10−3 

2.15 ⋅ 10−4 1.34
⋅ 10−2 

2.82 ⋅ 10−4 1.46 ⋅ 10−2 3.31 ⋅ 10−4 1.61 ⋅ 10−2 
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Apple 2.58
⋅ 10−4 

1.61
⋅ 10−2 

1.14 ⋅ 10−4 8.76
⋅ 10−3 

3.17 ⋅ 10−4 1.55 ⋅ 10−2 2.94 ⋅ 10−4 1.47 ⋅ 10−2 

NASDAQ 3.08
⋅ 10−5 

5.55
⋅ 10−3 

3.39 ⋅ 10−5 5.22
⋅ 10−3 

2.03 ⋅ 10−4 1.21 ⋅ 10−2 1.73 ⋅ 10−4 1.08 ⋅ 10−2 

SP500 5.78
⋅ 10−7 

7.60
⋅ 10−4 

1.95 ⋅ 10−5 4.08
⋅ 10−3 

1.37 ⋅ 10−4 9.45 ⋅ 10−3 1.19 ⋅ 10−4 9.37 
⋅ 10−3 

NYSE 1.05
⋅ 10−5 

3.24
⋅ 10−3 

4.48 ⋅ 10−5 5.98
⋅ 10−3 

1.32 ⋅ 10−4 8.79 ⋅ 10−3 7.50 ⋅ 10−5 7.18 ⋅ 10−3 

ISHARES 6.75
⋅ 10−6 

2.60
⋅ 10−3 

6.50 ⋅ 10−5 6.61
⋅ 10−3 

2.98 ⋅ 10−4 1.53 ⋅ 10−2 2.88 ⋅ 10−4 1.47 ⋅ 10−2 

QQQ 6.77
⋅ 10−5 

8.23
⋅ 10−3 

3.50 ⋅ 10−5 4.82
⋅ 10−3 

2.65 ⋅ 10−4 1.44 ⋅ 10−2 1.77 ⋅ 10−4 1.16 ⋅ 10−2 

VANGUARD 9.85
⋅ 10−6 

3.14
⋅ 10−3 

4.34 ⋅ 10−5 5.60
⋅ 10−3 

2.08 ⋅ 10−4 1.19 ⋅ 10−2 9.49 ⋅ 10−5 8.25 ⋅ 10−3 

 

Table 13 (Log Returns Prediction, 18th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.34
⋅ 10−3 

3.66
⋅ 10−2 

1.67 ⋅ 10−4 1.11
⋅ 10−2 

4.97 ⋅ 10−4 1.88 ⋅ 10−2 5.04 ⋅ 10−4 1.91 ⋅ 10−2 

Google 1.44
⋅ 10−4 

1.20
⋅ 10−2 

1.47 ⋅ 10−4 1.06
⋅ 10−2 

3.31 ⋅ 10−4 1.51 ⋅ 10−2 3.95 ⋅ 10−4 1.67 ⋅ 10−2 

Apple 3.75
⋅ 10−4 

1.94
⋅ 10−2 

8.69 ⋅ 10−5 7.40
⋅ 10−3 

4.84 ⋅ 10−4 1.82 ⋅ 10−2 3.80 ⋅ 10−4 1.58 ⋅ 10−2 

NASDAQ 1.13
⋅ 10−4 

1.06
⋅ 10−2 

6.90 ⋅ 10−5 5.59
⋅ 10−3 

2.15 ⋅ 10−4 1.23 ⋅ 10−2 2.16 ⋅ 10−4 1.20 ⋅ 10−2 

SP500 2.76
⋅ 10−6 

1.66
⋅ 10−3 

3.97 ⋅ 10−5 4.10
⋅ 10−3 

1.43 ⋅ 10−4 1.01 ⋅ 10−2 1.32 ⋅ 10−4 9.60
⋅  10−3 

NYSE 1.36
⋅ 10−4 

1.17
⋅ 10−2 

4.66 ⋅ 10−5 4.94
⋅ 10−3 

1.22 ⋅ 10−4 9.03 ⋅ 10−3 1.03 ⋅ 10−4 8.45
⋅  10−3 
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ISHARES 2.17
⋅ 10−6 

1.47
⋅ 10−3 

9.46 ⋅ 10−5 6.57
⋅ 10−3 

3.06 ⋅ 10−4 1.48 ⋅ 10−2 3.56 ⋅ 10−4 1.57 ⋅ 10−2 

QQQ 1.44
⋅ 10−4 

1.20
⋅ 10−2 

6.90 ⋅ 10−5 5.56
⋅ 10−3 

2.95 ⋅ 10−4 1.45 ⋅ 10−2 2.39 ⋅ 10−4 1.27 ⋅ 10−2 

VANGUARD 3.48
⋅ 10−5 

5.90
⋅ 10−3 

4.41 ⋅ 10−5 4.93
⋅ 10−3 

1.79 ⋅ 10−4 1.12 ⋅ 10−2 8.54 ⋅ 10−5 7.76 ⋅ 10−3 

 

Table 14 (Log Returns Prediction, 30th day into future) 

 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 2.72
⋅ 10−5 

5.21
⋅ 10−3 

4.59 ⋅ 10−4 1.53
⋅ 10−2 

4.83 ⋅ 10−4 1.88 ⋅ 10−2 4.83 ⋅ 10−4 1.87 ⋅ 10−2 

Google 8.44
⋅ 10−4 

2.91
⋅ 10−2 

4.96 ⋅ 10−4 1.38
⋅ 10−2 

3.91 ⋅ 10−4 1.47 ⋅ 10−2 3.90 ⋅ 10−4 1.49 ⋅ 10−2 

Apple 2.18
⋅ 10−4 

1.48
⋅ 10−2 

1.23 ⋅ 10−4 8.93
⋅ 10−3 

4.51 ⋅ 10−4 1.69 ⋅ 10−2 4.52 ⋅ 10−4 1.69 ⋅ 10−2 

NASDAQ 2.61
⋅ 10−5 

5.11
⋅ 10−3 

1.08 ⋅ 10−4 7.58
⋅ 10−3 

2.51 ⋅ 10−4 1.25 ⋅ 10−2 2.51 ⋅ 10−4 1.23 ⋅ 10−2 

SP500 6.18
⋅ 10−7 

7.86
⋅ 10−4 

6.21 ⋅ 10−5 5.74
⋅ 10−3 

1.53 ⋅ 10−4 9.43 ⋅ 10−3 1.54 ⋅ 10−4 9.45 ⋅ 10−3 

NYSE 2.22
⋅ 10−6 

1.49
⋅ 10−3 

6.21 ⋅ 10−5 6.08
⋅ 10−3 

1.14 ⋅ 10−4 8.68 ⋅ 10−3 1.13 ⋅ 10−4 8.65 ⋅ 10−3 

ISHARES 9.60
⋅ 10−5 

9.80
⋅ 10−3 

1.42 ⋅ 10−4 8.62
⋅ 10−3 

3.35 ⋅ 10−4 1.45 ⋅ 10−2 3.41 ⋅ 10−4 1.43 ⋅ 10−2 

QQQ 1.04
⋅ 10−5 

3.23
⋅ 10−3 

1.09 ⋅ 10−4 7.60
⋅ 10−3 

2.60 ⋅ 10−4 1.25 ⋅ 10−2 2.60 ⋅ 10−4 1.25 ⋅ 10−2 

VANGUARD 8.39
⋅ 10−5 

9.16
⋅ 10−3 

6.20 ⋅ 10−5 6.19
⋅ 10−3 

9.72 ⋅ 10−5 8.02 ⋅ 10−3 9.76 ⋅ 10−5 7.89 ⋅ 10−3 

 

Table 15 (Log Returns Prediction, 72nd day into future) 
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 Echo State 
Network 

GARCH LSTM GRU 

Dataset MSE MAE MSE MAE MSE MAE MSE MAE 

Amazon 1.83
⋅ 10−4 

1.28
⋅ 10−2 

3.91 ⋅ 10−4 1.48
⋅ 10−2 

6.09 ⋅ 10−4 1.91 ⋅ 10−2 6.14 ⋅ 10−4 1.92 ⋅ 10−2 

Google 6.69
⋅ 10−4 

2.59
⋅ 10−2 

3.08 ⋅ 10−4 1.20
⋅ 10−2 

5.80 ⋅ 10−4 1.79 ⋅ 10−2 5.72 ⋅ 10−4 1.79 ⋅ 10−2 

Apple 1.02
⋅ 10−4 

3.19
⋅ 10−3 

1.48 ⋅ 10−4 9.38
⋅ 10−3 

3.62 ⋅ 10−4 1.53 ⋅ 10−2 3.50 ⋅ 10−4 1.51 ⋅ 10−2 

NASDAQ 6.03
⋅ 10−4 

2.46
⋅ 10−2 

1.03 ⋅ 10−4 7.86
⋅ 10−3 

2.25 ⋅ 10−4 1.23 ⋅ 10−2 2.26 ⋅ 10−4 1.23 ⋅ 10−2 

SP500 1.68
⋅ 10−4 

1.30
⋅ 10−2 

6.13 ⋅ 10−5 6.04
⋅ 10−3 

1.27 ⋅ 10−4 9.02 ⋅ 10−3 1.28 ⋅ 10−4 9.06 ⋅ 10−3 

NYSE 3.41
⋅ 10−5 

1.85
⋅ 10−3 

5.77 ⋅ 10−5 6.00
⋅ 10−3 

8.92 ⋅ 10−5 7.53 ⋅ 10−3 8.81 ⋅ 10−5 7.46 ⋅ 10−3 

ISHARES 5.19
⋅ 10−4 

2.28
⋅ 10−2 

1.36 ⋅ 10−4 8.88
⋅ 10−3 

2.92 ⋅ 10−4 1.40 ⋅ 10−2 3.09 ⋅ 10−4 1.43 ⋅ 10−2 

QQQ 5.57
⋅ 10−4 

2.36
⋅ 10−2 

1.04 ⋅ 10−4 7.84
⋅ 10−3 

2.38 ⋅ 10−4 1.25 ⋅ 10−2 2.37 ⋅ 10−4 1.25 ⋅ 10−2 

VANGUARD 1.53
⋅ 10−5 

1.24
⋅ 10−3 

5.24 ⋅ 10−5 5.83
⋅ 10−3 

7.91 ⋅ 10−5 7.01 ⋅ 10−3 8.04 ⋅ 10−5 7.03 ⋅ 10−3 

 

 


