International Journal of Social Science & Economic Research
Submit Paper

Title:
WHICH SOLAR CELL WILL PROVE TO BE A SUSTAINABLE FUTURE ASSET? : A COMPLETE REVIEW

Authors:
Tanya Kashyap

|| ||

Tanya Kashyap
Bsc (Hons) Physics, University of Delhi

MLA 8
Kashyap, Tanya. "WHICH SOLAR CELL WILL PROVE TO BE A SUSTAINABLE FUTURE ASSET? : A COMPLETE REVIEW." Int. j. of Social Science and Economic Research, vol. 6, no. 8, Aug. 2021, pp. 2780-2798, doi.org/10.46609/IJSSER.2021.v06i08.016. Accessed Aug. 2021.
APA 6
Kashyap, T. (2021, August). WHICH SOLAR CELL WILL PROVE TO BE A SUSTAINABLE FUTURE ASSET? : A COMPLETE REVIEW. Int. j. of Social Science and Economic Research, 6(8), 2780-2798. Retrieved from https://doi.org/10.46609/IJSSER.2021.v06i08.016
Chicago
Kashyap, Tanya. "WHICH SOLAR CELL WILL PROVE TO BE A SUSTAINABLE FUTURE ASSET? : A COMPLETE REVIEW." Int. j. of Social Science and Economic Research 6, no. 8 (August 2021), 2780-2798. Accessed August, 2021. https://doi.org/10.46609/IJSSER.2021.v06i08.016.

References

[1]. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
[2]. Nayak, P. K., Bisquert, J. & Cahen, D. Assessing possibilities and limits for solar cells. Adv. Mater. 23, 2870–2876 (2011). This study introduces operational loss as a parameter for the comparison and analysis of solar cell technologies.
[3]. Nayak, P. K. & Cahen, D. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26, 1622–1628 (2014).
[4]. Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017). This study introduces the concept of determining the photovoltaic gap of a solar cell from the EQE of the cell.
[5]. Wang, Y. et al. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 8, 1801352 (2018).
[6]. Markvart, T. The thermodynamics of optical étendue. J. Opt. A 10, 015008 (2008).
[7]. Hirst, L. C. & Ekins-Daukes, N. J. Fundamental losses in solar cells. Prog. Photovolt. 19, 286–293 (2011). This article provides analytical expressions for the fundamental losses in solar cells.
[8]. M.A. Green,” Third generation photovoltaics: solar cells for 2020 and beyond,” Physica E: Low- dimensional Systems and Nanostructures, vol. 14, pp. 65-70, 2002.
[9]. McEvoy,A, Castaner, L. and Markvart, T.(2012) Solar Cells: Materials, Manufacture and Operation. 2nd Edition, Elsevier Ltd., Oxford, 3-25.
[10]. Fahrenbruch A.L. and Bube,R.H.”Fundamentals of Solar Cells”. Academic Press Inc., New York (1983).
[11]. Chu, Y. and Meisen, P. (2011),” Review and Comparison of Different Solar Energy Technologies”, Report of Global Energy Network Institute (GENI), Diego.
[12]. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang and T. Puzzer, “Silicon nanostructures for third generation photovoltaic solar cells, “Thin Solid Films, vol. 511, pp. 654-662, 2006.
[13]. X. Wu, “High- efficiency polycrystalline Cdte Thin –Film Solar Cells, “Solar Energy, vol. 77, pp. 803-814, 2004.
[14]. Yadav, A. and Kumar, P. (2015) Enhancement in Efficiency of PV Cell through P&O Algorithm International Journal for Technological Research in Engineering, 2, 2642-2644.
[15]. R. W. Miles, K. M. Hynes and I. Forbes, “Photovoltaics Solar Cells: An overview of State-of- the art cell development and environmental issues, “Progress in Crystal Growth and Characterization of Materials 51,1-42, Elsevier Ltd., 2005.
[16]. Srinivas, B. Balaji, S., Nagendra Babu, M. Reddy and Y.S (2015), “Review on Present and Advance Materials for Solar cells. International Journal of Engineering Research Online,3, 178-182.
[17]. Shruti Sharma, Kamlesh Kumari Jain, Ashutosh Sharma,”Solar cells: In Research and Applications”, Material Sciences and Applications 2015,6,1145- 1155.
[18]. Chopra,K.L., Paulson, P.D. and Dutt, V. (2004) Thin-Film Solar Cells: An Overview. Progress in Photovoltaics, 12, 69-92.
[19]. Maehlum, M.A. (2015) Energy Informative the Homeowner’s Guide to Solar panels, best thin Film Solar Panels—Amorphous, Cadmium telluride or CIGS?
[20]. V. Avrutin, N. Izyumskaya and H. Morko, “Semiconductor solar cells: recent progress in terrestrial applications,” Super- lattices and Microstructures, vol. 49, no.4, 2011.
[21]. Zweibel K. Issues in thin film PV manufacturing cost reduction. Sol Energy Mater Sol Cells 1999. http://dx.doi.org/10.1016/S0927-0248(99)00019-7.
[22]. Naomoto H, Arimoto S, Morikawa H, Sasaki H, Denki M, Kaisha K, et al. Thin-Film Sol Cell 1995.
[23]. Ian T, Washington P. Thin-film solar cell; 2004.
[24]. Schock HW. Thin film photovoltaics. Appl Surf Sci 1996. http://dx.doi. org/10.1016/0169- 4332(95)00303-7.
[25]. Kim JH, Kim DH, Seong TY. Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices. Ceram Int 2015. http://dx.doi.org/10.1016/j.ceramint.2014.10.148.
[26]. Kaelin M, Rudmann D, Tiwari AN. Low-cost processing of CIGS thin film solar cells. Sol Energy 2004. http://dx.doi.org/10.1016/j.solener.2004.08.015.
[27]. Fthenakis V. Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 2009. http://dx.doi.org/10.1016/j.rser. 2009.05.001.
[28]. Chang C-H, Lee Y-L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 2007.http://dx.doi.org/10.1063/1.2768311.
[29]. Lin SC, Lee YL, Chang CH, Shen YJ, Yang YM. Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self- assembled monolayer and chemical bath deposition. Appl Phys Lett 2007. http://dx.doi.org/10. 1063/1.2721373.
[30]. Sandoval-Paz MG, Sotelo-Lerma M, Valenzuela-Jáuregui JJ, Flores-Acosta M, Ram?rez- Bon R. Structural and optical studies on thermal- annealed In2S3 ? films prepared by the chemical bath deposition technique. Thin Solid Films 2005. http://dx.doi.org/10.1016/j.tsf.2004.05.096.
[31]. Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films 1990. http://dx.doi.org/10.1016/0040- 6090(90)90277-K.
[32]. Håkansson G, Hultman L, Sundgren JE, Greene JE, Münz WD. Microstructures of TiN films grown by various physical vapour deposition techniques. Surf Coat Technol 1991.http://dx.doi.org/10.1016/0257-8972(91)90128-J.
[33]. Liu C, Leyland A, Bi Q, Matthews A. Corrosion resistance of multi-layered plasma assisted physical vapour deposition TiN and CrN coatings. Surf Coat Technol 2001.http://dx.doi.org/10.1016/S0257-8972(01)01267-1.
[34]. Kadlec S, Musil J, Vysko?il J. Growth and properties of hard coatings prepared by physical vapor deposition methods. Surf Coat Technol 1992. http:// dx.doi.org/10.1016/S0257-8972(09)90064-0.
[35]. Ghanem MA, Bartlett PN, De Groot P, Zhukov A. A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem Commun 2004.http://dx.doi.org/10.1016/j.elecom.2004.03.001.
[36]. Nishino J, Chatani S, Uotani Y, Nosaka Y. Electrodeposition method for controlled formation of CdS films from aqueous solutions. J Electroanal Chem 1999. http://dx.doi.org/10.1016/S0022- 0728(99)00250-8.
[37]. Makrides, G., Zinsser, B, Norton, M., and Georghiou. (2012) ‘Performance of Photovoltaics Under Actual Operating Conditions’, INTECH Open Access Publisher
[38]. Markvarta, Tom, and Luis Castañerb. (2011), ‘Principles of solar cell operation’, Practical Handbook of Photovoltaics: Fundamentals and Applications (2011).
[39]. McEvoy, A., Castaner, L. and Markvart, T. (2012). Solar cells: Materials , Manufacture and Operation 2nd edition Elsevier Ltd. Oxford . Meral, M.E. and Dincer, F. (2011)
[40]. ‘A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems’, Renewable and Sustainable Energy Reviews, Vol.15, No.5.
[41]. Mazzola, M.S. and Kelley, R., (2009) ‘Application of a normally OFF silicon carbide power JFET in a photovoltaic inverter’ Conf. Proc. a. IEEE Appl. Power Electron. Conf. Expo. – APEC.
[42]. Munoz, M.A., Alonso-Garcia, M.C., Nieves, V. and Chenlo, F., (2011) ‘Early degradation of silicon PV modules and guaranty conditions’ Solar Energy, Vol.85.
[43]. Ndiaye, A., Charki, A., Kobi, A., Ke´be, ´ C., Ndiaye, P.A. and Sambou, V. (2013) ‘Degradations of silicon photovoltaic modules: A iterature review’, Solar Energy, Vol.96
[44]. National Renewable Energy Laboratory (NREL) (2015) Available at: http://www.nrel.gov/ (accessed 2/ Feb/2019).
[45]. Osborne M (2010) PV Tech. GaAs solar cell from Spire sets 42.3% conversion efficiency record. Available at:http://www.pvtech.org/news/gaas_solar_cell_from_ spire_sets_42.3_conversion_effici ency_record (accessed 4/2/2019)
[46]. Oreski, G.and Wallner, G.M. (2009) ‘Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions’, Solar Energy Vol.83, No.7.
[47]. Ozgocmen A. (2007) Electricity generation using solar cells. Published M.Sc. thesis, Gazi University Institute of Science and Technology, Ankara
[48]. Papageorgiou N (2013) E´ cole Polytechnique Fe´de´rale De Lausanne News. Available at: http://actu.epfl.ch/news/dye-sensitized-solar-cells- rival-conventional-ce-2/ (accessed 4/2/2019).
[49]. Parida, B., Iniyan, S., Goic,R. (2011) ‘A review of solar photovoltaic technologies’, Renewable and Sustainable Energy Reviews , Vol.15 , No.3.
[50]. Park, N.G. (2015) ‘Perovskite solar cells: an emerging photovoltaic technology’, Materials Today Elsevier, Vol.18, No. 2.
[51]. Perlin, J. (2004), Silicon solar cell turns 50. No. NREL/BR-520-33947. National Renewable Energy Lab., Golden, CO.(US),
[52]. Pettersson, H., Gruszecki. T., (2001) ‘Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods’, Solar Energy Materials and Solar Cells, Vol.70, No.2.
[53]. Philipps, S.P., Bett, A.W., Horowitz, K. and Kurtz, S. (2015) Current Status of Concentrator Photovoltaics (CPV) Technology Report Version 1.2, Fraunhofer Institute for Solar Energy Systems (NREL).
[54]. Posorski,R. Bussmann,M. and Menke, C.(2003) ‘Does the use of solar home systems contribute to climate protection?’, Renewable energy, Vol. 28, No.7.
[55]. Powalla, M., Dimmler, B. (2001) ‘CIGS solar cells on the way to mass production: Process Statistics of a 30 cm * 30 cm module line’, Solar energy Materials &Solar cells, Vol.67.
[56]. Powalla, M., and Bonnet, D. (2007). Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007.
[57]. Pradhan, A., Ali, S. M. and Behera, P. (2012) ‘Utilization of Battery Bank in case of Solar PV System and Classification of Various Storage Batteries’, International Journal of Scientific and Research Publications, Vol.2, No.12.
[58]. Quintana, M.A., King, D.L., McMahon, T.J. and Osterwald, C.R., (2002), ‘Commonly observed degradation in field-aged photovoltaic modules’, In: Proc. 29th IEEE Photovoltaic Specialists Conference.
[59]. Qusay., Noorah and Noor Ahmed. (2012) ‘Effect of temperature variations on Solar Cell Efficiency’, International Journal of Engineering, Business and Enterprise Applications (IJEBEA), Vol.2, No.4.
[60]. Realini, A., 2003. Mean Time before Failure of Photovoltaic Modules. Final Report (MTBF Project), Federal Office for Education and Science Tech. Rep., BBW 99.0579.

Abstract:
The use of Solar cells is becoming popular and by the end next few decades the chances of running out of the natural resources present on the earth are very likely. Therefore, many alternatives are being searched and developed; one of them being the Solar cells that were first developed in 1954. Ever since then, there have been many advances in the same. In this paper, the different categories of solar cells have been studied from the core and the respective efficiencies have been thoroughly compared to conclude the types of solar cell that are going to prove to be the most efficient and open to advancement in the near future.

IJSSER is Member of