References
[1]. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
[2]. Nayak, P. K., Bisquert, J. & Cahen, D. Assessing possibilities and limits for solar cells. Adv. Mater. 23, 2870–2876 (2011). This study introduces operational loss as a parameter for the comparison and analysis of solar cell technologies.
[3]. Nayak, P. K. & Cahen, D. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26, 1622–1628 (2014).
[4]. Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017). This study introduces the concept of determining the photovoltaic gap of a solar cell from the EQE of the cell.
[5]. Wang, Y. et al. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 8, 1801352 (2018).
[6]. Markvart, T. The thermodynamics of optical étendue. J. Opt. A 10, 015008 (2008).
[7]. Hirst, L. C. & Ekins-Daukes, N. J. Fundamental losses in solar cells. Prog. Photovolt. 19, 286–293 (2011). This article provides analytical expressions for the fundamental losses in solar cells.
[8]. M.A. Green,” Third generation photovoltaics: solar cells for 2020 and beyond,” Physica E: Low- dimensional Systems and Nanostructures, vol. 14, pp. 65-70, 2002.
[9]. McEvoy,A, Castaner, L. and Markvart, T.(2012) Solar Cells: Materials, Manufacture and Operation. 2nd Edition, Elsevier Ltd., Oxford, 3-25.
[10]. Fahrenbruch A.L. and Bube,R.H.”Fundamentals of Solar Cells”. Academic Press Inc., New York (1983).
[11]. Chu, Y. and Meisen, P. (2011),” Review and Comparison of Different Solar Energy Technologies”, Report of Global Energy Network Institute (GENI), Diego.
[12]. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang and T. Puzzer, “Silicon nanostructures for third generation photovoltaic solar cells, “Thin Solid Films, vol. 511, pp. 654-662, 2006.
[13]. X. Wu, “High- efficiency polycrystalline Cdte Thin –Film Solar Cells, “Solar Energy, vol. 77, pp. 803-814, 2004.
[14]. Yadav, A. and Kumar, P. (2015) Enhancement in Efficiency of PV Cell through P&O Algorithm International Journal for Technological Research in Engineering, 2, 2642-2644.
[15]. R. W. Miles, K. M. Hynes and I. Forbes, “Photovoltaics Solar Cells: An overview of State-of- the art cell development and environmental issues, “Progress in Crystal Growth and Characterization of Materials 51,1-42, Elsevier Ltd., 2005.
[16]. Srinivas, B. Balaji, S., Nagendra Babu, M. Reddy and Y.S (2015), “Review on Present and Advance Materials for Solar cells. International Journal of Engineering Research Online,3, 178-182.
[17]. Shruti Sharma, Kamlesh Kumari Jain, Ashutosh Sharma,”Solar cells: In Research and Applications”, Material Sciences and Applications 2015,6,1145- 1155.
[18]. Chopra,K.L., Paulson, P.D. and Dutt, V. (2004) Thin-Film Solar Cells: An Overview. Progress in Photovoltaics, 12, 69-92.
[19]. Maehlum, M.A. (2015) Energy Informative the Homeowner’s Guide to Solar panels, best thin Film Solar Panels—Amorphous, Cadmium telluride or CIGS?
[20]. V. Avrutin, N. Izyumskaya and H. Morko, “Semiconductor solar cells: recent progress in terrestrial applications,” Super- lattices and Microstructures, vol. 49, no.4, 2011.
[21]. Zweibel K. Issues in thin film PV manufacturing cost reduction. Sol Energy Mater Sol Cells 1999. http://dx.doi.org/10.1016/S0927-0248(99)00019-7.
[22]. Naomoto H, Arimoto S, Morikawa H, Sasaki H, Denki M, Kaisha K, et al. Thin-Film Sol Cell 1995.
[23]. Ian T, Washington P. Thin-film solar cell; 2004.
[24]. Schock HW. Thin film photovoltaics. Appl Surf Sci 1996. http://dx.doi. org/10.1016/0169- 4332(95)00303-7.
[25]. Kim JH, Kim DH, Seong TY. Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices. Ceram Int 2015. http://dx.doi.org/10.1016/j.ceramint.2014.10.148.
[26]. Kaelin M, Rudmann D, Tiwari AN. Low-cost processing of CIGS thin film solar cells. Sol Energy 2004. http://dx.doi.org/10.1016/j.solener.2004.08.015.
[27]. Fthenakis V. Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 2009. http://dx.doi.org/10.1016/j.rser. 2009.05.001.
[28]. Chang C-H, Lee Y-L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 2007.http://dx.doi.org/10.1063/1.2768311.
[29]. Lin SC, Lee YL, Chang CH, Shen YJ, Yang YM. Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self- assembled monolayer and chemical bath deposition. Appl Phys Lett 2007. http://dx.doi.org/10. 1063/1.2721373.
[30]. Sandoval-Paz MG, Sotelo-Lerma M, Valenzuela-Jáuregui JJ, Flores-Acosta M, Ram?rez- Bon R. Structural and optical studies on thermal- annealed In2S3 ? films prepared by the chemical bath deposition technique. Thin Solid Films 2005. http://dx.doi.org/10.1016/j.tsf.2004.05.096.
[31]. Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films 1990. http://dx.doi.org/10.1016/0040- 6090(90)90277-K.
[32]. Håkansson G, Hultman L, Sundgren JE, Greene JE, Münz WD. Microstructures of TiN films grown by various physical vapour deposition techniques. Surf Coat Technol 1991.http://dx.doi.org/10.1016/0257-8972(91)90128-J.
[33]. Liu C, Leyland A, Bi Q, Matthews A. Corrosion resistance of multi-layered plasma assisted physical vapour deposition TiN and CrN coatings. Surf Coat Technol 2001.http://dx.doi.org/10.1016/S0257-8972(01)01267-1.
[34]. Kadlec S, Musil J, Vysko?il J. Growth and properties of hard coatings prepared by physical vapor deposition methods. Surf Coat Technol 1992. http:// dx.doi.org/10.1016/S0257-8972(09)90064-0.
[35]. Ghanem MA, Bartlett PN, De Groot P, Zhukov A. A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem Commun 2004.http://dx.doi.org/10.1016/j.elecom.2004.03.001.
[36]. Nishino J, Chatani S, Uotani Y, Nosaka Y. Electrodeposition method for controlled formation of CdS films from aqueous solutions. J Electroanal Chem 1999. http://dx.doi.org/10.1016/S0022- 0728(99)00250-8.
[37]. Makrides, G., Zinsser, B, Norton, M., and Georghiou. (2012) ‘Performance of Photovoltaics Under Actual Operating Conditions’, INTECH Open Access Publisher
[38]. Markvarta, Tom, and Luis Castañerb. (2011), ‘Principles of solar cell operation’, Practical Handbook of Photovoltaics: Fundamentals and Applications (2011).
[39]. McEvoy, A., Castaner, L. and Markvart, T. (2012). Solar cells: Materials , Manufacture and Operation 2nd edition Elsevier Ltd. Oxford . Meral, M.E. and Dincer, F. (2011)
[40]. ‘A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems’, Renewable and Sustainable Energy Reviews, Vol.15, No.5.
[41]. Mazzola, M.S. and Kelley, R., (2009) ‘Application of a normally OFF silicon carbide power JFET in a photovoltaic inverter’ Conf. Proc.
a. IEEE Appl. Power Electron. Conf. Expo. – APEC.
[42]. Munoz, M.A., Alonso-Garcia, M.C., Nieves, V. and Chenlo, F., (2011) ‘Early degradation of silicon PV modules and guaranty conditions’ Solar Energy, Vol.85.
[43]. Ndiaye, A., Charki, A., Kobi, A., Ke´be, ´ C., Ndiaye, P.A. and Sambou, V. (2013) ‘Degradations of silicon photovoltaic modules: A iterature review’, Solar Energy, Vol.96
[44]. National Renewable Energy Laboratory (NREL) (2015) Available at: http://www.nrel.gov/ (accessed 2/ Feb/2019).
[45]. Osborne M (2010) PV Tech. GaAs solar cell from Spire sets 42.3% conversion efficiency record. Available at:http://www.pvtech.org/news/gaas_solar_cell_from_ spire_sets_42.3_conversion_effici ency_record (accessed 4/2/2019)
[46]. Oreski, G.and Wallner, G.M. (2009) ‘Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions’, Solar Energy Vol.83, No.7.
[47]. Ozgocmen A. (2007) Electricity generation using solar cells. Published M.Sc. thesis, Gazi University Institute of Science and Technology, Ankara
[48]. Papageorgiou N (2013) E´ cole Polytechnique Fe´de´rale De Lausanne News. Available at: http://actu.epfl.ch/news/dye-sensitized-solar-cells- rival-conventional-ce-2/ (accessed 4/2/2019).
[49]. Parida, B., Iniyan, S., Goic,R. (2011) ‘A review of solar photovoltaic technologies’, Renewable and Sustainable Energy Reviews , Vol.15 , No.3.
[50]. Park, N.G. (2015) ‘Perovskite solar cells: an emerging photovoltaic technology’, Materials Today Elsevier, Vol.18, No. 2.
[51]. Perlin, J. (2004), Silicon solar cell turns 50. No. NREL/BR-520-33947. National Renewable Energy Lab., Golden, CO.(US),
[52]. Pettersson, H., Gruszecki. T., (2001) ‘Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods’, Solar Energy Materials and Solar Cells, Vol.70, No.2.
[53]. Philipps, S.P., Bett, A.W., Horowitz, K. and Kurtz, S. (2015) Current Status of Concentrator Photovoltaics (CPV) Technology Report Version 1.2, Fraunhofer Institute for Solar Energy Systems (NREL).
[54]. Posorski,R. Bussmann,M. and Menke, C.(2003) ‘Does the use of solar home systems contribute to climate protection?’, Renewable energy, Vol. 28, No.7.
[55]. Powalla, M., Dimmler, B. (2001) ‘CIGS solar cells on the way to mass production: Process Statistics of a 30 cm * 30 cm module line’, Solar energy Materials &Solar cells, Vol.67.
[56]. Powalla, M., and Bonnet, D. (2007). Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007.
[57]. Pradhan, A., Ali, S. M. and Behera, P. (2012) ‘Utilization of Battery Bank in case of Solar PV System and Classification of Various Storage Batteries’, International Journal of Scientific and Research Publications, Vol.2, No.12.
[58]. Quintana, M.A., King, D.L., McMahon, T.J. and Osterwald, C.R., (2002), ‘Commonly observed degradation in field-aged photovoltaic modules’, In: Proc. 29th IEEE Photovoltaic Specialists Conference.
[59]. Qusay., Noorah and Noor Ahmed. (2012) ‘Effect of temperature variations on Solar Cell Efficiency’, International Journal of Engineering, Business and Enterprise Applications (IJEBEA), Vol.2, No.4.
[60]. Realini, A., 2003. Mean Time before Failure of Photovoltaic Modules. Final Report (MTBF Project), Federal Office for Education and Science Tech. Rep., BBW 99.0579.