References
[1]. Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29-44.
[2]. Chouhan, L., Agarwal, N., Ishita, P., & Saxena, S. (2018, December). Stock market prediction using machine learning. In First international conference on secure cyber puttinging and communications, National Institute of Technology, JALANDHAR.
[3]. Cohen, Y., Hendler, D., & Rubin, A. (2018). Detection of malicious webmail attachments based on propagation patterns. Knowledge-Based Systems, 141, 67-79.
[4]. Devarajan, Y. (2018). A study of robotic process automation use cases today for tomorrow’s business. International Journal of Computer Techniques, 5(6), 12-18.
[5]. Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78-87.
[6]. Ferrati, F., &Mu?atto, M. (2021). Entrepreneurial ?nance: emerging approaches using machine learning and big data. Foundations and Trends® in Entrepreneurship, 17(3), 232-329.
[7]. Ghanavati, M., Wong, R. K., Chen, F., Wang, Y., &Perng, C. S. (2014, June). An e?ective integrated method for learning big imbalanced data. In 2014 IEEE International Congress on Big Data (pp. 691-698). IEEE.
[8]. Grolinger, K., Higashino, W. A., Tiwari, A., &Capretz, M. A. (2013). Data management in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud Computing: advances, systems and applications, 2(1), 1-24.
[9]. Jhaveri, R. H., & Patel, N. M. (2015). A sequence number based bait detection scheme to thwart grayhole attack in mobile ad hoc networks. Wireless Networks, 21(8), 2781-2798.
[10]. Khonji, M., Iraqi, Y., & Jones, A. (2013). Phishing detection: a literature survey. IEEE Communications Surveys & Tutorials, 15(4), 2091-2121.
[11]. L’heureux, A., Grolinger, K., Elyamany, H. F., &Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. Ieee Access, 5, 7776-7797.
[12]. Lee, Y.S.; Choi, S.S.; Choi, J.; Song, J.S. A Lightweight Malware Classi?cation Method Based on Detection Results of Anti-Virus Software. In Proceedings of the 2017 12th Asia Joint Conference on Information Security (AsiaJCIS), Seoul, Korea, 10–11 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5–9
[13]. Leo, M., Sharma, S., &Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29. https://doi.org/10.3390/risks7010029
[14]. Martins, P., Sá, F., Morgado, F., & Cunha, C. (2020, June). Using machine learning for cognitive Robotic Process Automation (RPA). In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
[15]. Martins, P., Sá, F., Morgado, F., & Cunha, C. (2020, June). Using machine learning for cognitive Robotic Process Automation (RPA). In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
[16]. OECD (2021), Arti?cial Intelligence, Machine Learning and Big Data in Finance: Opportunities, Challenges, and Implications for Policy Makers.
[17]. Paxson, V. (1999). Bro: a system for detecting network intruders in real-time. Computer networks, 31(23-24), 2435-2463.
[18]. Shon, T., & Moon, J. (2007). A hybrid machine learning approach to network anomaly detection. Information Sciences, 177(18), 3799-3821.’
[19]. Strader, T. J., Rozycki, J. J., Root, T. H., & Huang, Y. H. J. (2020). Machine learning stock market prediction studies: Review and research directions. Journal of International Technology and Information Management, 28(4), 63-83.
[20]. Vidal, J. M., Orozco, A. L. S., &Villalba, L. J. G. (2017). Alert correlation framework for malware detection by anomaly-based packet payload analysis. Journal of Network and Computer Applications, 97, 11-22.
[21]. Wall, L. D. (2018). Some ?nancial regulatory implications of arti?cial intelligence. Journal of Economics and Business, 100, 55-63.
[22]. Wang, J., Crawl, D., Purawat, S., Nguyen, M., &Altintas, I. (2015, October). Big data provenance: Challenges, state of the art and opportunities. In 2015 IEEE international conference on big data (Big Data) (pp. 2509-2516). IEEE.
[23]. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., ... &Stoica, I. (2012). Resilient Distributed Datasets: A {Fault-Tolerant} Abstraction for {In-Memory} Cluster Computing. In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12) (pp. 15-28).