References
[1]. Bobo, L. (1988). Attitudes toward the Black Political Movement. Public Opinion Quarterly, 52(3), 287-302.
[2]. Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
[3]. Carroll, S. (2004). Spacetime and Geometry. Addison Wesley.
[4]. Chen, G. M. (2012). Why do women write personal blogs? Satisfying needs for self-disclosure and affiliation tell part of the story. Computers in Human Behavior, 28(1), 171–180.
[5]. Crandall, C. S., Eshleman, A., & O'Brien, L. (2002). Social Norms and the Expression and Suppression of Prejudice. Journal of Personality and Social Psychology, 82(3), 359-378.
[6]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
[7]. Dignum, V. (2019). Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer Nature.
[8]. Doe et al., (2021), Title of the paper.
[9]. Doe et al., (Under Review), Has OpenAI Achieved Artificial General Intelligence in ChatGPT?
[10]. Doe et al., (Under Review), Why All Technology Might be Accelerating to a Branching Point Between Two Singularities.
[11]. Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469-493.
[12]. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178-190.
[13]. Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7), 769-822.
[14]. Fetzer, T., Hensel, L., Hermle, J., & Roth, C. (2020). Coronavirus Perceptions and Economic Anxiety. Review of Economics and Statistics, 1-41.
[15]. Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). Sage Publications.
[16]. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media.
[17]. Gigerenzer, G. (2007). Gut Feelings: The Intelligence of the Unconscious. Viking Penguin.
[18]. Haidt, J. (2012). The Righteous Mind: Why Good People are Divided by Politics and Religion. Pantheon.
[19]. Henrich, J. (2016). The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton University Press.
[20]. Iyengar, S., & Westwood, S. J. (2015). Fear and loathing across party lines: New evidence on group polarization. American Journal of Political Science, 59(3), 690–707.
[21]. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
[22]. Jost, J. T., Federico, C. M., & Napier, J. L. (2009). Political Ideology: Its Structure, Functions, and Elective Affinities. Annual Review of Psychology, 60, 307-337.
[23]. Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.
[24]. Kumar, S., Morstatter, F., & Liu, H. (2013). Twitter Data Analytics. Springer.
[25]. Loper, E., & Bird, S. (2002). NLTK: The Natural Language Toolkit. In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics (pp. 63–70).
[26]. Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21.
[27]. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. The New England Journal of Medicine, 375(13), 1216–1219.
[28]. Pariser, E. (2011). The Filter Bubble: What the Internet Is Hiding from You. Penguin Press.
[29]. Srnicek, N. (2017). Platform Capitalism. Polity Press.
[30]. Törnberg, P. (2023). Chatgpt-4 outperforms experts and crowd workers in annotating political twitter messages with zero-shot learning. arXiv preprint arXiv:2304.06588.