References
[1]. Bahrampour, S., Ramirez, L., Azimi, J., & Davidson, N. (2019). Interpretability in Machine Learning: An Overview of Transparency and Explainability in AI. arXiv preprint arXiv:1903.03894.
[2]. Bhadra, A., Saha, S., & Singh, D. (2019). Prediction of Type 2 Diabetes using Machine Learning Algorithms. Journal of Health and Medical Informatics, 10(1), 1-9.
[3]. Bishop,C. M. &Tipping,M.E.(2003).Bayesian regression and classification. Nato Science Series sub Series III Computer And Systems Sciences,190:267-288.
[4]. Chen, M., Zhou, X., He, T., & Huang, Z. (2020). Federated Learning in Healthcare: A Review and Case Studies. arXiv preprint arXiv:2007.07835.
[5]. Drew, B. J., & Reid, C. L. (2019). Early Detection of Cancer: Evaluation of a Machine Learning Model using Clinical Notes in Electronic Health Records. Journal of Oncology Practice, 15(6), e531-e538.
[6]. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial Intelligence in Radiology. Nature Reviews Cancer, 18(8), 500-510.
[7]. Jain, H., Redrouthu, S., Agarwal, J., Agarwal, T., Leddo, J. et al. (2023). A Machine Learning-based Lifespan Calculator. International Journal of Social Science and Economic Research, 8(7), 2102-2108.
[8]. Lu, T., Yuan, Y., Agarwal, J., Agarwal, T., Jain, H., Leddo, J. et al. (2023). A Meta-regression and Bayesian Regression Framework for Combining Results of Scientific Research and Surveys of People’s Lifestyles to Make Recommendations on What Interventions Will Help Them Live Longer and Healthier. International Journal of Social Science and Economic Research, 8(3), 524-531.
[9]. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2019). Ensuring Fairness in Machine Learning to Advance Health Equity. Annals of Internal Medicine, 170(10), 681-682.
[10]. van Houwelingen,H.C., Arends,L.R. &Stijnen,T.(2002). Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine,21(4):589-624. doi:10.1002/sim.1040
[11]. Whelton, P. K., Carey, R. M., Aronow, W. S., et al. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71(6), e13-e115.
[12]. Wilson, P.W., D’Agostino, R.B., Levy, D., Belanger, A.M., Silbershatz, H. & Kannel, W.B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation. 97(18):1837-1847.