References
[1]. Akda?, O.A., 2017. Scorecard valuation for early-stage pre-revenue start-up companies (Doctoral dissertation, MIDDLE EAST TECHNICAL UNIVERSITY). Available at: https://www.researchgate.net/profile/Olcay_Akdag2/publication/337831352_SCORECARD_VALUATION_FOR_EARLY-STAGE_PRE-REVENUE_START-UP_COMPANIES/links/5dee080ba6fdcc283711df38/SCORECARD-VALUATION-FOR-EARLY-STAGE-PRE-REVENUE-START-UP-COMPANIES.pdf [Accessed 22nd December 2020].
[2]. Cotei, C., and Farhat, J., 2017. The evolution of financing structure in US startups. The Journal of Entrepreneurial Finance, 19(1), p.4. Available at: https://digitalcommons.pepperdine.edu/cgi/viewcontent.cgi?article=1307&context=jef [Accessed 22nd December 2020].
[3]. Gozman, D., Liebenau, J., and Mangan, J., 2018. The innovation mechanisms of fintech start-ups: insights from SWIFT’s innotribe competition. Journal of Management Information Systems, 35(1), pp.145-179. Available at: https://core.ac.uk/download/pdf/146471229.pdf [Accessed 22nd December 2020].
[4]. Huang, D., Zhou, J., and Wang, H., 2018. RFMS Method for Credit Scoring Based on Bank Card Transaction Data. StatisticaSinica, 28(4), pp.2903-2919. Available at: https://www.researchgate.net/profile/Jing_Zhou136/publication/339301838_RFMS_Method_for_Credit_Scoring_Based_on_Bank_Card_Transaction_Data/links/5e4a3fce299bf1cdb931028d/RFMS-Method-for-Credit-Scoring-Based-on-Bank-Card-Transaction-Data.pdf [Accessed 22nd December 2020].
[5]. Óskarsdóttir, M., Bravo, C., Sarraute, C., Vanthienen, J., and Baesens, B., 2019. The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics. Applied Soft Computing, 74, pp.26-39. Available at: https://arxiv.org/pdf/2002.09931 [Accessed 22nd December 2020].
[6]. Støre-Valen, M., and Lohne, J., 2016. Analysis of assessment methodologies suitable for building performance. Facilities. Available at: https://www.researchgate.net/profile/Marit_Store-Valen2/publication/310781037_Analysis_of_assessment_methodologies_suitable_for_building_performance/links/5845d47d08ae61f75dd7cd31/Analysis-of-assessment-methodologies-suitable-for-building-performance.pdf [Accessed 22nd December 2020].
[7]. Wang, X., Hu, M., Zhao, Y., and Djehiche, B., 2020. Credit scoring is based on the set-valued identification method. Journal of Systems Science and Complexity, 33(5), pp.1297-1309. Available at: http://sysmath.com/jssc/CN/article/downloadArticleFile.do?attachType=PDF&id=13939 [Accessed 22nd December 2020].
[8]. York, J.M., 2018. Putting lean startup into perspective: A novel approach for discovering and developing a successful business model. Arch Bus Adm Manag. Available at: https://gavinpublishers.com/admin/assets/articles_pdf/1526621086article_pdf2007162723.pdf [Accessed 22nd December 2020].
[9]. R.S. Michalski et al, 2013. Machine Learning: An Artificial Intelligence Approach. Springer.
[10]. Jigar Patel, Sahil Shah, Priyank Thakkar, K Kotecha, 2015. Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques, Expert Systems with Applications, Volume 42, Issue 1, 2015, Pages 259-268, ISSN 0957-4174
[11]. James, Gareth et al, 2017. Tree-Based Methods. An Introduction to Statistical Learning: with Applications in R. . New York: Springer. pp. 303–336. ISBN 978-1-4614-7137-0.
[12]. Scutari, M., Vitolo, C. & Tucker, A, 2019. Learning Bayesian networks from big data with greedy search: computational complexity and efficient implementation. Stat Comput 29, 1095–1108 (2019). https://doi.org/10.1007/s11222-019-09857-1.
[13]. Everitt, B. S. et al, 2011. Index, in Cluster Analysis. 5th Edition, John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9780470977811.index .
[14]. K. Gurney, 2004. An introduction to neural networks. University of Sheffield, Taylor & Francis e-Library.
[15]. scikit-learn developers (BSD License), 2020. Choosing the right estimator scikit learn 0.18.1 documentation, [Online]. Available:
http://scikit-learn.org/stable/tutorial/machine_learning_map/