References
[1] . Allison, K., Patel, D., & Besharim, C. (2021). The Value of Annual Glaucoma Screening for High-Risk Adults Ages 60 to 80. Cureus. https://doi.org/10.7759/cureus.18710
[2] . Boyd, K. (2019, August 28). What Is Glaucoma? American Academy of Ophthalmology. https://www.aao.org/eye-health/diseases/what-is-glaucoma
[3] . Brusini, P. (2008, January 1). Monitoring glaucoma progression (C. Nucci, L. Cerulli, N. N. Osborne, & G. Bagetta, Eds.). ScienceDirect; Elsevier. https://www.sciencedirect.com/science/article/abs/pii/S0079612308011060?via%3Dihub
[4] . Chua, J., Baskaran, M., Ong, P. G., Zheng, Y., Wong, T. Y., Aung, T., & Cheng, C.-Y. (2015). Prevalence, Risk Factors, and Visual Features of Undiagnosed Glaucoma. JAMA Ophthalmology, 133(8), 938. https://doi.org/10.1001/jamaophthalmol.2015.1478
[5] . Diaz-Pinto, A., Morales, S., Naranjo, V., Köhler, T., Mossi, J., & Navea, A. (2019). CNNs for Automatic Glaucoma Assessment using Fundus Images: An Extensive Validation. Figshare.com. https://doi.org/10.6084/m9.figshare.7613135.v1
[6] . Glaucoma Tests: What To Expect & How To Interpret Results. (2022, March 9). Cleveland Clinic. https://my.clevelandclinic.org/health/diagnostics/22514-glaucoma-tests
[7] . Google Cloud. (2019, January 28). Advanced Guide to Inception v3 on Cloud TPU | Cloud TPU | Google Cloud. Google Cloud. https://cloud.google.com/tpu/docs/inception-v3-advanced
[8] . Huang, X., Kong, X., Shen, Z., Ouyang, J., Li, Y., Jin, K., & Ye, J. (2023). GRAPE: A multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management. Scientific Data, 10(1), 520. https://doi.org/10.1038/s41597-023-02424-4
[9] . Madhumalini, M., & Devi, T. M. (2022). Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network. Journal of Digital Imaging. https://doi.org/10.1007/s10278-021-00577-5
[10] . Mishra, R. K., Reddy, G. Y. S., & Pathak, H. (2021). The Understanding of Deep Learning: A Comprehensive Review. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/5548884
[11] . O’shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. https://arxiv.org/pdf/1511.08458.pdf
[12] . Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., & Meriaudeau, F. (2018). Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Data, 3(3), 25. https://doi.org/10.3390/data3030025
[13] . Rewri, P. (2023). Towards better management of glaucoma in India. Indian Journal of Ophthalmology, 71(3), 686. https://doi.org/10.4103/IJO.IJO_379_23
[14] . Shroff, M. (2023, May 16). Know your Neural Network architecture more by understanding these terms. Medium. https://medium.com/@shroffmegha6695/know-your-neural-network-architecture-more-by-understanding-these-terms-67faf4ea0efb#:~:text=in%20deep%20learning.-
[15] . Skalicky, S., & Goldberg, I. (2008). Depression and Quality of Life in Patients With Glaucoma: A Cross-sectional Analysis Using the Geriatric Depression Scale-15, Assessment of Function Related to Vision, and the Glaucoma Quality of Life-15. Journal of Glaucoma, 17(7), 546–551. https://doi.org/10.1097/ijg.0b013e318163bdd1
[16] . Susanna, R., De Moraes, C. G., Cioffi, G. A., & Ritch, R. (2015). Why Do People (Still) Go Blind from Glaucoma? Translational Vision Science & Technology, 4(2). https://doi.org/10.1167/tvst.4.2.1
[17] . Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception Architecture for Computer Vision. ArXiv.org. https://arxiv.org/abs/1512.00567
[18] . U-Net: Convolutional Networks for Biomedical Image Segmentation. (2015). Uni-Freiburg.de. https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
[19] . Zhang, J. (2019, October 18). UNet Line by Line Explanation. Medium. https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5