References
[1] . Adamson, A. S., & Smith, A. (2018). Machine learning and health care disparities in dermatology. JAMA Dermatology, 154(11), 1247-1248. https://doi.org/10.1001/jamadermatol.2018.2348
[2] . Ardila, D., et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954-961. https://doi.org/10.1038/s41591-019-0447-x
[3] . Codella, N. C., et al. (2018). Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI). 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 168-172. https://doi.org/10.1109/ISBI.2018.8363547
[4] . Esteva, A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056
[5] . Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
[6] . LeCun, Y., et al. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
[7] . Tschandl, P., et al. (2019). Human–computer collaboration for skin cancer recognition. Nature Medicine, 25(7), 1229-1234. https://doi.org/10.1038/s41591-019-0576-y
[8] . Wang, X., et al. (2021). Hybrid attention networks for skin disease classification. IEEE Transactions on Medical Imaging, 40(7), 1763-1774. https://doi.org/10.1109/TMI.2021.3051235
[9] . Zhang, H., et al. (2020). An ensemble approach to skin lesion classification. Computers in Biology and Medicine, 120, 103748. https://doi.org/10.1016/j.compbiomed.2020.103748